LOW-SPEED PRE-IGNITION IN DI SI TURBOCHARGED ENGINES

DOWNSIZING – WHY T-GDI?

2

TURBO PERFORMANCE LEVELS

TURBO PERFORMANCE LEVELS AND IRREGULAR COMBUSTION

DEFINITION OF (LOW SPEED) PRE-IGNITION

CAUSES OF LSPI - OVERVIEW

6

Rik Alewijnse, AVL Powertrain UK ltd, 12 June 2012

VISIOLUTION SYSTEM SETUP

AVL VISIOLUTION SENSORS

VisioTomo Head Gasket Sensor

In this case showing autoignition.

Rik Alewijnse, AVL Powertrain UK ltd, 12 June 2012

engineexpo2012

Rik Alewijnse, AVL Powertrain UK ltd, 12 June 2012

crown due to overcooling at part load

LSPI – WORKING HYPOTHESIS

DESIGN ACTIONS - PREVENTATIVE

Source: Behr engineexpo2012

Dehnstoff Arbeitskol Führung

POWER CYLINDER SAFETY FACTORS

	Design target	Over Pressure Margin	
Head Bolt	Gap lift	+++	Ĩ
Gasket	Bead fatigue	++++	
Liner	Hoop stress fatigue	+++	
Main Bolt	Bearing shell retention	+++	
Crank	Torsional and bending fatigue	++++	
Rod	Buckling	\bigcirc)/ 9
Pin	Schlaefke ovalisation and bending	++++	A A A A A A A A A A A A A A A A A A A
Piston	Crown TMF	++++	
	2 nd Land fatigue	++	
Cyl Head	Chamber TMF	++++	

DESIGN ACTIONS - ADAPTIVE

Second ring land

CONCLUSIONS

- Turbo Gasoline Direct Injection engines are an excellent enabler for engine downsizing to address the CO₂ reduction challenge.
- Specific performance levels in t-GDI engines are not new, but high loads below 2000 rpm mean that Low Speed Pre-Ignition needs careful consideration
- LSPI has a range of causal factors, which are an area of active research
- Design actions are available to reduce (but not eliminate) the occurrence of LSPI events.
 - Other design actions to accommodate the effects of occasional LSPI are also necessary.
 - Con rod design for t-GDI engines must consider compressive loading, with buckling failure as the limiting load case

Thank You

