Next-Cycle and Same-Cycle Cylinder Pressure Based Control of Internal Combustion Engines

Gary Parente Engine Control Product Manager National Instruments

www.ni.com/enginecontrol

Your Automotive Testing and Simulation

In-Vehicle Test and Logging

Rapid Control Prototyping

Hardware-in-the-Loop Simulation

Automotive End of Line Test

Test Cell Measurement & Control

Automotive Infotainment Test

www.ni.com/enginecontrol

Drivven Products

Overview

Next-Cycle Control

- Control based on cylinder pressure derived calculations
- Calculations are complete before the next firing of the related cylinder
- Requires <1ms loop time
- Can be done with dedicated hardware or with interrupts in the main CPU
- Applications
 - Load balancing
 - Auto-calibration
 - Aid in engine tuning

Same-Cycle Control

- Control within the same cylinder event
- Requires ~ 1CAD loop times
- Done with dedicated computing resources
- Applications
 - Multi-inject control
 - Misfire re-spark
 - Lean misfire re-inject
 - Dynamic fuel control

Next-Cycle Control timing

- Data must be available before it is needed in the next cylinder event
- Major timing constraints
 - Type of calculation determines "cutoff angle"
 - CPU availability
 - Actuator type

Engine Setup

- GM/Fiat 1.9L
 engine
 - Bosch Commonrail
 - EGR
 - Turbo
 - Variable Swirl
- 3 cylinders instrumented for cylinder pressure

Controller Setup

- COTS Hardware
 - NI PXI-1042 8-slot chassis
 - NI PXI-8106 2.16GHz dual core real-time controller
 - NI PXI-7813R 3M gate FPGA
 - NI PXI-6123 8 channel, simultaneous sampling analog input
 - NI 9215 4 channel, simultaneous sampling analog input
- Drivven Hardware
 - Drivven AD Combo Module
 - Drivven Low-Side Module
 - Drivven DI Module
 - Drivven PFI Module
- Sensors
 - AVL GH-13P Pressure Sensors
 - AVL Micro-IFEM Charge Amplifier
 - AVL 365C Optical Encoder

Next-Cycle Control Processing

- 1. Pressure in the cylinder at the sensor
- 2. Charge amp
- 3. A/D Converter on the card
- 4. Buffer on the card
- 5. Buffer in CPU memory
- 6. Split copies of data to different memory locations
- 7. Preprocess data
- 8. Process data
- 9. Feedback Control
- 10. Engine Control
- 11. Actuator drivers
- 12. Actuators

Next-Cycle Control Results – MFB50 location

Without feedback

With feedback

100 cycle ensemble and engine global average of MFB

Next-Cycle Control Results by Cylinder and Cycle

10 bar BMEP, 2500 rpm, 10% EGR				
		Cylinder 1	Cylinder 2	Cylinder 3
COV 50% MFB	Open Loop	1.42	1.43	1.12
	Next Cycle	1.03	1.01	1.04
2.25 bar BMEP, 3000 RPM, 18% EGR				
		Cylinder 1	Cylinder 2	Cylinder 3
COV 50% MFB	Open Loop	2.65	2.57	5.10
	Next Cycle	1.73	2.19	2.49
3 bar BMEP, 1800 RPM, 33% EGR				
		Cylinder 1	Cylinder 2	Cylinder 3
COV 50% MFB	Open Loop	2.03	2.40	4.57
	Next Cycle	1.53	1.90	2.64

Same-Cycle Control Setup

- Application: Inter-pulse spacing control
- Single zone heat release
- Calculations performed
 entirely in FPGA

$$\frac{dQ}{d\theta} = \left(\frac{1}{n-1}\right) * V * \frac{dP}{d\theta} + \left(\frac{n}{n-1}\right) * P * \frac{dV}{d\theta}$$

Single Zone Heat Release

What is an FPGA?

- Field-Programmable Gate Array
- Generic Digital Logic
 - Can implement math (+ * /), processors, RAM, serial ports, etc.
 - Can not directly do ADC, requires an external A/D.
- Differences from processors
 - Reprogrammable for flexible, dedicated logic
 - Does many simple parallel tasks instead on one complicated task
 - More complex tasks take a larger FPGA, but run at the same speed. As opposed to a processor where they take longer to run but the processor remains constant
 - Programmed in LabVIEW, Verilog, and VHDL as opposed to C, Java, LabVIEW, Matlab, etc for processors
- Can be used in place of ASIC (Application Specific Integrated Circuit)

Detailed NI FPGA Architecture

- The FPGA is put on a board that attaches to the main processor over a PCI bus
- 20MB/s throughput to processor
- Control loops of 200Hz on the Pentium for complex calculation, >40MHz on the FPGA

FPGA Code

- Read data from previous loop
- Read control constants from CPU
- Filter

- Single zone heat release
- Trigger
- Inject
- Peg Cylinder pressure against MAP

Same-Cycle Control Data

- Raw pressure is noisy
- Filtering induces latency
- Filtering can induce phase shift
- Point-by-point feedback must trade latency for filtering

Same-Cycle Control Results: 2nd Pulse Delay

Steady state operating conditions

• Sweep trigger parameters

Same-Cycle Control Results: EGR Sweep

- Steady state, just sweeping EGR
- As EGR increases combustion slows
- Inter-pulse spacing increases to keep consistent burn overlap

Future Work

- Restructure the same-cycle control FPGA code
 - Make coding easier
 - Support floating point
 - Build compiler
- Integrate same-cycle and next-cycle control into our upcoming embedded engine control products

Conclusion

- Next-cycle control is a convenient tool for engine tuning
- As more vehicles are equipped with cylinder pressure sensors it will become more mainstream in passenger cars and light trucks
- Standard tools and techniques can be implemented in conventional, but fast, ECUs to handle this in the future.

- Same-cycle control opens up new areas of control not previously possible
- Same-cycle control offers a limited range of capabilities because of limited actuator authority
- Same-cycle controllers will need specialty processing hardware

Your Automotive Testing and Simulation

In-Vehicle Test and Logging

Rapid Control Prototyping

Hardware-in-the-Loop Simulation

Automotive End of Line Test

Test Cell Measurement & Control

Automotive Infotainment Test

