DEVELOPMENT OF HIGH STRENGTH STEEL FOR COLD HEADED SCREWS

Jacques Rondot Christian Schomaker

Outline

- Overwiev of Lisi Automotive
- High strength steel development History
- Requirements and results
 - Cold forming ability
 - ➔ Heat treatment
 - → Fatigue behaviour
 - → Hydrogen embrittlement
- Examples
- Downsizing
- Summary

1 business, 3 sectors of activity

925 M€ Sales*

> L[S] AEROSPACE

Aerospace fasteners and assembly components

N° 3 in the world 16 sites 4,677 employees 407,6 M€ of sales

Customers: Airbus. Boeing, EADS Dassault, Embraer, Eurocopter, GEAE, Pratt & Whitney, Rolls Royce, Safran

J

66% outside France* 65 M€ of investments* 8,512 Employees*

MEDICAL

IS AUTOMOTIVE

Automotive fasteners and assembly components

N° 6 in the world

19 sites

3,312 employees

446,3 M€ of sales

Customers: BMW, Daimler, Ford, PSA, Renault-Nissan, VW-Audi, Autoliv, Bosch, Faurecia, TRW, Schneider

[[**S**] World class contractor for the medical device industry

> 4 sites 508 employees 74 M€ of sales

LISI AUTOMOTIVE: 3 expertise units

Threaded Fasteners

Competitive and optimised factories in forging and metal working

J

Clipped Solutions

Continuous innovation – expert engineers in design and development

Safety Mechanical Components

Know-how – expert engineers in forging, machining and assembly

History of high strength steel development

- A new age of hydrogen embrittlement studies
 - Started by LISI AUTOMOTIVE to find the influent parameters of steels susceptibility to free hydrogen :
 - surface carburisation
 - phosphorus intergranular diffusion.

With ARCELOR-MITTAL : measurement of hydrogen input along the production process of screws :

published in may 2006 in "Traitement Thermique" revue.

Project

C

LISI AUTOMOTIVE / ARCELOR-MITTAL HS steel project

- ➔ Project submitted by LISI AUTOMOTIVE in June 2004
- → Benchmarking and return of experience (10.9 and 12.9)
- → 12 grades tested with laboratory casting (high and low carbon)
- ➔ 4 grades tested to finalise a solution :

38CrMoNiB5-3

First industrial cast of 38CrMoNiB5-3 in September 2008

➔ Qualification on M7 conrod screw

→ Qualification on M10, M12, M14 screws

→ Test of bainitic quenching in lab. and industrial conditions

High strength steel requirements

Mechanical properties (full size test)

- → Rm = 1500 MPa (equivalent to former 14.9 grade).
- Elongation full size Af_{1,2D} > 13% or test samples A5d > 8% (current specification for 12.9 grade).
- Fatigue resistance: amplitude > 50MPa at 3.10⁶ cycles under high preload.
- Hydrogen embrittlement: Susceptibility to hydrogen brittle fracture at 1500 MPa not higher than 37Cr4 at 1250 MPa

→ Steel elaboration : continuous casting and hot rolling.

→ Wire preparation : annealing, surface treatment, drawing.

 Cold heading, thread rolling, quenching and tempering (> 400°C)

→ Surface treatments with low hydrogen input.

Target applications

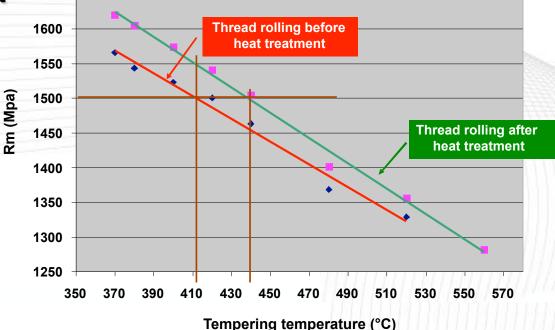
С

Power train M6-M10 screws: conrod, crankshaft bearing, cylinder head, fly wheel, differential ring gear

 Suspension, transmission : M10-M14 screws.

Results : working 38CrMoNiB5-3 steel grade

Cold forging ability

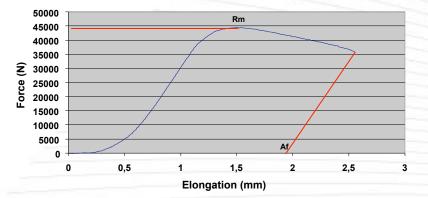

 38CrMoNiB5-3 has the same forging ability as 37Cr4
Both steels have identical mechanical properties after annealing

	Rm (MPa)		Z%	
	As rolled	Annealed drawn	As rolled	Annealed drawn
37Cr4	690	550	55	70
38CrMoNiB5-3	1 210	580	38	72

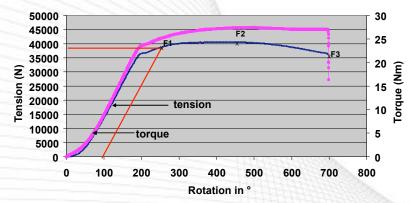
Results : working 38CrMoNiB5-3 steel grade

Heat treatment response

- Reference ISO 898-1 : tempering 12.9 grade T°> 380°C
- The new grade achieves 1500 MPa after oil quenching and tempering at T°>400°C


AUTOMOTIVE

l[S]


Characterisation of M7*100 conrod screw

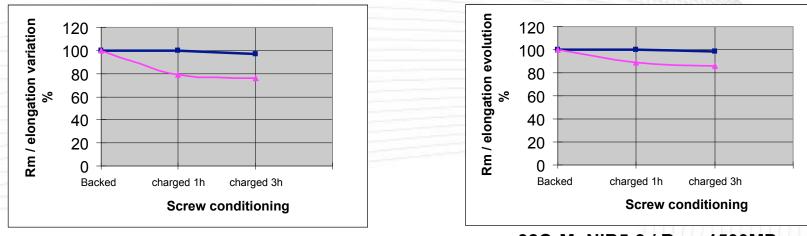
Full size tensile test : 38CrMoNiB5-3 Thread rolled before heat treatment

I

Tightening test : 38CrMoNiB5-3 Thread rolled before heat treatment

		37Cr4 (sérial	38CrMoNiB5-3		
		parts)	Rolling before HT	Rolling after HT	
test	Rp 0,2 (MPa)	1 170	1 452	1 469	
	Rm (MPa)	1 310	1 538	1 527 15	
Tensile	Af%	19	19		
ing	F1 (N)	33 370	39 140	39 800	
Tightening	F2 (N)	34 340	40 590	40 590	
	θ3-θ1 (°)	314	306	320	

[S]


AUTOMOTIVE

Susceptibility to hydrogen brittle fracture

- Test have been carried at 3 hydrogen levels :
 - After backing : forecasted serial process.
 - Hydrogen charged : 1h in sulphuric environment, representative of industrial process before backing
 - Hydrogen charged : 3h in sulphuric environment.

Slow tensile test results (10⁻⁴s⁻¹):

37Cr4 / Rm = 1260MPa

J

38CrMoNiB5-3 / Rm =1500MPa

With higher mechanical resistance, the new grade offers a lower susceptibilyty to hydrogen brittle fracture than serial 37Cr4 steel grade

Fatigue behaviour

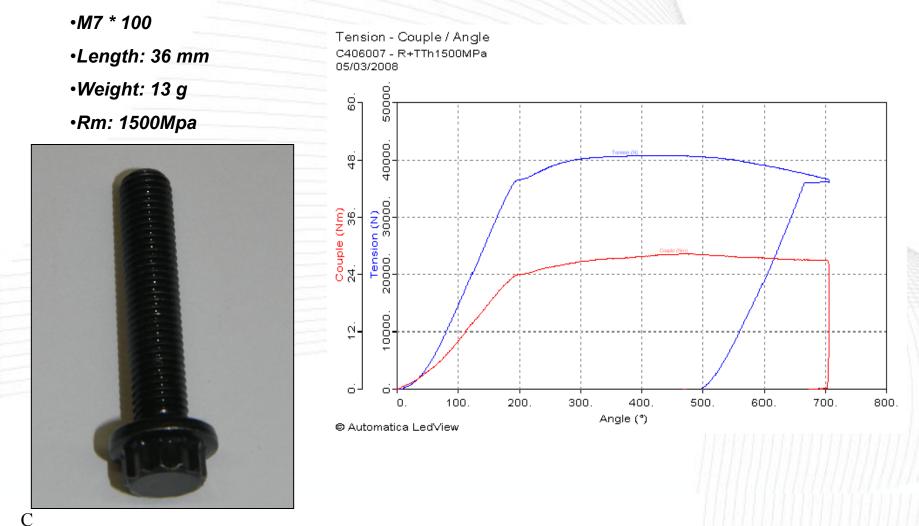
M7*100 conrod screws tested in alterned traction

	Average load	Thread rolling / heat treatment	Thread geometry	Endurance limit at 1M cycles
Serial parts : 37Cr4 Rm = 1300MPa	31 000 N	After HT After HT	ISO M ISO MJ	1650 N 2300 N
New steel : 38CrMoNiB5-3 Rm = 1500MPa	36 000 N	After HT Before HT	ISO MJ ISO MJ	2300 N 2400 N

Fatigue behaviour:

J

- → Similar between high strength steel and 37Cr4.
- → Similar between parts rolled after or before heat treatment.
- Endurance limit of M7 screw made from 38CrMoNiB5-3 steel grade:
 - → 2300 N, that means 80 MPa at 10⁶ cycles.
- **ISO MJ thread improves endurance limit drastically:**
 - → Thanks to an increase of thread bottom radius : ISO M = 0,11 / ISO MJ = 0,17


Conrod screws application

Conrod screw characteristics:

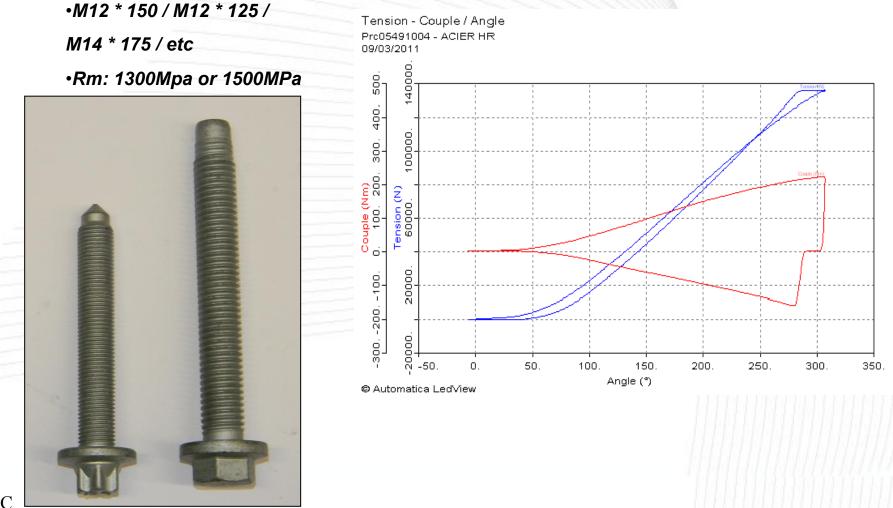
Tightening test graph:

AUTOMOTIVE

Copyrights LISI AUTOMOTIVE - Co

Head cylinder screws application Head cylinder screw characteristics: Tightening test tension graph: •M12 * 150 Tension - Couple / Angle Length: 134 mm 05499001 - P11018 30/01/2012 •Weight: 126 g 120000 Couple (Nm) 50. 100. 150. 200. 250. 300. 350. 400. 450. 500. 550. 600 •Rm: 1500Mpa Tension (N) 100000. 80000. Tension (N) 60000 8 Couple (Nm 40000 20000. o'ö 0. 200. 400. 600. 800. 1000. 1200. Angle (°) © Automatica LedView C

AUTOMOTIVE


Copyrights LISI AUTOMOTIVE - Confic

Chassis screws application

Characteristics:

Torque / Tension graph:

Key success for global downsizing

J

Aim of a project should be weight reduction of all parts

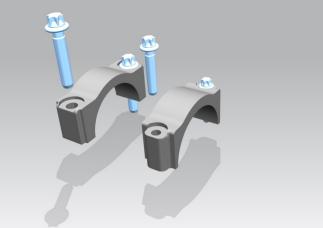
AUTOMOTIVE

Less place for install the bolts and other fastening items

➔ More complicate design of the fasteners

High strength steel gives you an opportunity for install smaller dimensions with same resistance

Coldforming ability of steel is a important factor
Mastering of tightening strategy


Involving fasteners design in the early steps of the project.

Advantages

J

The weight savings noticed on screws are multiplied by 5 to 10 taking their environment into account.

Main advantage : The reduction of screw diameter allows downsizing of assembled parts, for example :

R

- → M6 or M7 conrod screws : reduction of con-rod weight
- → M8 crankshaft bearing screws : reduction of engine length
- Suspension arm axle : reduction of linking rod dimensions

38CrMoNiB5-3

- → High strength steel (1500 MPa) with good coldforming ability
- → Heat treatment possibility acc. Iso 898-1
- ➔ Increased fatigue life
- Very good resistance against hydrogen embrittlement

- Weight reduction due to downsizing can be reached with the customer working together on the application
- → We have to be embedded in the project in a very early stage

Copyrights LISI AUTOMOTIVE -

Thank you for your attention!