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Company Profile SOLUTIONS

] ] ] . Partner:
* Long term experience with biomechanical

models

4

*  Biomotion Solutions: Leading MBS Technology

for Technology Leaders

* Interdisciplinary research

— University spin-off

:[( ~ INSTITUT FUR SPORTWISSENSCHAFT

g

— Implementation of models in industry
standard mbs-platform (SIMPACK)
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Biomechanical Influences on
Vehicle Dynamics?
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SOLUTIONS

Mass Machine [kg] Ratio Human/ influence to be
Machine expected?
(Mass Human 80 Kg)
10 8 definitely
210 0.38 possibly
1500 0.053 no specific
assumption
17 000 0.0047 none
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Human-Machine-Interaction SOLUTIONS
Roll-Ratcheting

Neuro-muscular vibration amplified by the fly by wire
(side stick) system causes the system to show
unwanted roll-oscillation.

— e *  Smith J and Montgomery T July 1996
Biomechanically induced and controller
coupled oscillations experienced on the
f-16xI aircraft during rolling maneuvers.
NASA Technical Memorandum 4752.
e : *  Dr. Ing. Martin Hanel, Dipl. Ing. Robert
Osterhuber EADS Military Air Systems,
Manching"The Role of Pilot Modelling in
Handling Qualities Evaluation",
November 2008)

I Biomechanical dynamics can affect vehicle dynamics

I Detailed investigation of rider motorcycle system

20/06/201
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The Active Human Body Model /\S'c‘?._"ﬂ‘%’%ﬂg

Biomechanical Model with Motion Controller

* The mechanical interface between the driver
and the vehicle has to be modeled with an
appropriate level of detail to take into account
the driver’ s influence on vehicle dynamics.

* Therefore a motion-control model for the
upper limbs had to be developed.

* The model is capable of steering the
motorcycle by hand-arm-movement.

20/06/201
5 /06/ Active Human Body Models for Vehicle Dynamics Simulation 5



/\ BIOMOTION

SOLUTIONS

Biomechanical Body Model

Elements and Parameters

* 17 rigid bodies

* Inertial parameters
from literature (NASA)

* Torque generators at
the joints represent net
muscle moments

e Reaction forces (e.g.
hand-handlebars or
saddle-pelvis)

20/06/201
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Chandler R, Clauser R and MCConville C
1975 Investigation of inertial properties of
the human body. AMRL Technical Report,
NASA Wright-Patterson Air Force Base.

Clauser C, MCConville J and Young J
1969Weight, volume and center of mass
of segments of the human body. AMRL
Technical Report, NASA Wright-Patterson
Air Force Base.

NASA 1978 NASA Reference Publication
1024: The internal properties of the body
and its segments. (NASA).
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Biomechanical Body Model AB'C"‘"C’T'C’N

SOLUTIONS
Model Generation by means of Varibody

* Input parameters for model: All necessary elements like joint

* Stature actuators, wobbling mass

. Weight elements or contact force
elements are also generated by
the model generator.

e Gender

17 segments

.........
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Biomechanical Body Model AS&"&?BE.‘%‘.

Interdisciplinary Approach

High Speed Video Analysis
EMG (muscular stimulation)
Reaction Forces

Cooperation:
Institute for Sports science University Tibingen
(Prof. Veit Wank)
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Motorcycle Model Asnomonom

SOLUTIONS
8 Bodies 11 Degrees of Freedom

* MBS Model (SIMPACK)
e 8rigid bodies (tot. 210 Kg)

e Linear suspension (damping
and stiffness)

e Realistic tyre model (“magic
formula”)

e 13 Joint States, 2 Constraints

* 11 Degrees Of Freedom (DOF)

20/06/201
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Frequency Response Function: AS&"G‘%L'E.E

Identification of Joint Parameters of the Rider

e Compared with measurement
data from V. Cossalter

* Cross spectrum: steering axis
acceleration / excitation torque

* Frequency sweep

20/06/201
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Variation of Arm Stiffness

Shifting the Resonance Frequency

BIOMOTION
SOLUTIONS
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admittance [acelleration - torque]

Variation arm tonus from 0.5 to 4

= output.$0_acc_steering_angle.loop 1: run 1: $p_srm_stiffnes = 0.5 output.$o_acc_steering_angle.loop 1: run 5: $p_srm_stiffnes = 2.5

""""" output.$o_acc_steering_angle.loop 1: run 2: $p_srm_stiffnes = 1

output.$0_acc_steering_angle.loop 1: run 6: $p_srm_stiffnes = 3

output.$o_acc_steering_angle.loop 1: run 3: $p_srm_stiffnes = 1.5 output.$o_acc_steering_angle.loop 1: run 7: $p_srm_stiffnes = 3.5

output.$0_acc_steering_angle.loop 1: run 4: $p_srm_stiffnes = 2 output.$o_acc_steering_angle.loop 1: run 8: $p_srm_stiffnes = 4

frf

3.0

2.5+

2.04

2 ' 3 " 4 ) 5 ’ [
frequency [1/s]
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Variation of Trunk Stiffness

Lesser Influence on Resonance
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admittance [acelleration - torque]

Variation torso tonus from 0.5 to 4

output.$o_acc_steering_angle.loop 1: run 1: $p_srm_stiffnes = 0.5 output.$0_acc_steering_angle.loop 1: run 5: $p_srm_stiffnes = 2.5
-------------- output.$o_acc_steering_angle.loop 1: run 2: $p_srm_stiffnes = 1 output.$0_acc_steering_angle.loop 1: run 6: $p_srm_stiffnes = 3
output.$o_acc_steering_angle.loop 1: run 3: $p_srm_stiffnes = 1.5 output.$0_acc_steering_angle.loop 1: run 7: $p_srm_stiffnes = 3.5
« output.$o_acc_steering_angle.loop 1: run 4: $p_srm_stiffnes = 2 output.$o_acc_steering_angle.loop 1: run 8: $p_srm_stiffnes = 4
3.0
2.54
2.04
1.5
E
1.0+
0.54
0.
-0.5 - - - -
0 2 3 3 5 [

frequency [1/s]
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Road Preview Sensor /\B-omomm

SOLUTIONS
Velocity Dependent Preview Distance

* Simple control approach: Road
Preview

*  Not expected to be near optimal
control

« Counter steering = “steer into
the fall”

* To control roll angle the steering
angle has to be controlled

AT4

* The desired steering angle is
input to Joint Space Model (JSV1)
controller

20/06/201
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Rider Controller

Signal Processing Scheme

A BIOMOTION

SOLUTIONS

Yaw-Error o

Track-Error >

Motorcycle-Stateg

Roll-Control Steering-AngIe>

JSM-Control

Rider-

»
»

Velocity-Control

20/06/201
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Multi Body Model

Motion
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Crossover Maneuver AB'°M°T'°N

SOLUTIONS
Stable Track Following
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A BIOMOTION

Re su |tS SOLUTIONS

1. Itis possible to realize a steer by hand-arm
motion control for standard maneuvers.

20/06/201
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Crossover Maneuver: SOLUTIONS

Influence of Muscular Tension

Crossover Maneuver

Position Error
Track Head Position $p_physical_strength = 4
------------- Motorcycle Position $p_physical_strength = 0.5
Motorcycle Position $p_physical_strength = 4
------------ Head Position $p_physical_strength = 0.5

104

0.5 [m]

®

loop 1: run 1: $p_physical_strength

(=

-

N
(e
B
o

position x [m]
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Circle Track Profile
Transition to Steady States
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. Two Symmetric Curves with Sign-Change
Standard Road Track: o '
with Straight Ramp
for Superelevation/Curvature
. Original ! .
Top view of track oo ‘ | Rolotion about Centerline
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Circle Track: Aa-omonom

SOLUTIONS
Riding with 20 m/s
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Cycles Maneuver:

Influence of Muscular Tension on Roll Oscillation

BIOMOTION
SOLUTIONS

circuit - entry

motorcycle roll oszillation under variation of physical strength

— $p_tonus =2 $p_tonus = 0.933333
------------- $p_tonus = 1.73333 $p_tonus = 0.666667

$p_tonus = 1.46667 wwwmwwwn §p tonus = 0.4
wwmwne: $p tonus = 1.2

loop 1: run 1: $p_tonus = 2 [rad]

~, n .
\\ Rider fails
N,

3.0 " 35 4.0 " 4.5

loop 1: run 1: $p_tonus = 2 [s]

5.5
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A BIOMOTION

SOLUTIONS

Results

1. Itis possible to realize a steer by hand-arm
motion control for standard maneuvers.

2. Anthropometrical parameters influence
vehicle handling.

20/06/201 Active Human Body Models for Vehicle Dynamics Simulation 21
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Weave Mode: ABIOMOTIDN

SOLUTIONS
Dependency on Muscular Tension

Tension = High (velocity = 60 m/s)

Phase Space Pot Yaw

w— 0l vl $J_Ranmen psi Yaw Asgle

Jdny
\SNEEP,

pa-dot Yaw Angle [sad's
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Weave Mode: ABIOMOTIDN

SOLUTIONS
Dependency on Muscular Tension

Tension = Normal (velocity = 60 m/s)

Phase Space Pot Yaw

20

Y
32 0%
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Weave Mode: ABIOMOTIDN

SOLUTIONS
Dependency on Muscular Tension

Tension = Low (velocity = 60 m/s)

Phase Space Pot Yaw
20t vel $J_Ranmen psi Yaw Asgle

20

14

104

0 51

0.0 —_—

084

ps-dot Yaw Angle [sads

2%
520 015 010 005 0bo 0bs

Pl Yaw Asgle [rad)
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Results

1. Itis possible to realize a steer by hand-arm
motion control for standard maneuvers.

2. Anthropometrical parameters influence
vehicle handling.

3. Rider’ s muscular tension influences
motorcycle ride stability.

20/06/201
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Hip Swing Induces Wobble

Compare Active Rider with Direct Torque Steering

A BIOMOTION

SOLUTIONS

Biomotion
Rider Model

>

20/06/201
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Compare Biomotion Rider vs. Steer by Torque
Direct Torque
Steering
0 04
0.3 034
g‘ 024 f g 02
s o 5 o
3 ..l AN mAthMﬂ" E| AN
| o7 ~ W vwvwvwvw 2 0% 7 <
% 0H % 0.4
g 07 & 02
-0.3H -0.3
04 30 35 40 4’5 5.0 045 30 35 40 45 5.0
time [s] time [s]
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Steering Admittance (FRF) SOLUTIONS

Low Damping

Biomotion Rider Steer by Torque

FRF of Biomotion Rider (low damped) FRF of Steering by Torque (low damped)

TRE (Nt
TRE N

R R

20/06/201

5 Active Human Body Models for Vehicle Dynamics Simulation 27



Steering Admittance (FRF) SOLUTIONS
High Damping

Biomotion Rider Steer by Torque

FRF of Biomotion Rider (high damped) FRF of Steering by Torque (high damped)
40 45
45 20
0 3%
3, 4 v
5 P 30
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7 17 z f?
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Y o y s
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s S
@ <
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Results

1. Itis possible to realize a steer by hand-arm
motion control for standard maneuvers.

2. Anthropometrical parameters influence
vehicle handling.

3. Rider’ s muscular tension influences
motorcycle ride stability.

4. The biomechanical rider FRF (admittance)
results implicitly from physical parameters.

20/06/201
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Perspectives SOLUTIONS

Active human body models have benefits in vehicle dynamics
simulation

*The control scheme will be extended to cover lap-time
optimization too (including rider’ s motion).

*Active driver and occupant models can be applied in general
vehicle dynamic simulation, e.g. for cars and busses (driver

assistance systems, steer and brake by wire, ride comfort, shift
comfort etc.).

*Biomotion models are applicable in vehicle concept innovation,
e.g. narrow track vehicles, e-bikes, three-wheelers.

20/06/201
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Road Excitation

Evaluation of Ride Comfort

BIOMOTION
SOLUTIONS

Road Excitation

Diagram

sensor acc.$S_MCR:$S_Head_Sensor_Default.abs

abs [m/s*2]

30

26

204

-0 2 3 J [

time [s]

Motorcycle states

joint pos $J_Rahmen.phi. Roll Angle
joint pos $J_Rahmen.psi: Yaw Angle
joint pos $§J_Rahmen.gam: Pitch Angle

phi: Roll Angle [rad]

04

0.3

time [s]
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Course of Adria A BIOMOTION
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Comparison with Optimal Maneuver Method

ADRIA
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Jumping Over an Obstacle ASE‘?.."G?B%E

Forces Acting on Human Body
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Application in Car Simulation
Shift Comfort Analysis

BIOMOTION
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Automatic Transmission - Shift Quality Simulation

Gear / Torque / Velocity

x10°

40 4.0000q 0.000 -
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1.33331
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[ m 16 Fi %
time [s]
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w
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B0

40]

204

-20
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Application in Car Simulation AS&"&?BE.‘%’.

Ride Comfort Analysis

Ride Simulation

Suspension
— force force $S_240_SDS SF_SPL abs

x '0.’

abs [N}

b 5 10 [3 20 5
tme (s)

Acceleration Head (x.y)

— s en$0r acC $S_999_PAS $S_Head_Sensor_Default x
=====sonsor acc $S_999_PAS $S_Head_Sensor_Default y

x [mis*2)
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