

Sustainable Material Design for Automotive Interiors

automotive interiors EXPO 2012, Stuttgart

Dr. Sascha Peters HAUTE INNOVATION – Agentur für Material und Technologie

In 2033 car producers will use more natural material ... Mercedes Racy with a wooden body (2006)

... they will plant parts on the field ... Nissan concept car "Locally Grown" (2010)

... that can clean the air... GMC Hummer transforms CO₂ into oxygen

... consist of textile fabrics ... BMW GINA (2008)

... will be produced within a generative process... screwdrivers race HAWK (2010)

... or will be assembled by robots. VW Nanospdyer, LA Design Challenge (2006)

Cars 2033 will be strong and flexible at the same time... lightweight structures of spider silk proteins, Nissan Design (2010)

... change shape according to the wind temperature ... shape memory materials for car bodies

... and adapt to the digital generation! EDAG Light Car with OLED Screens (2009)

4 Trends BIOLOGICAL, EFFICIENT, SMART, ENERGETIC

- 1. The organic trend changes from the supermarket in the industrial production.
- 2. The resource efficiency reaches a higher importance than today.
- 3. Materials and surfaces will receive additional qualities in addition to their mechanical functions.
- 4. Surfaces are a new source of energy functions.

4 Trends BIOLOGICAL, EFFICIENT, SMART, ENERGETIC

- 1. The organic trend changes from the supermarket in the industrial production.
- 2. The resource efficiency reaches a higher importance than today.
- 3. Materials and surfaces will receive additional qualities in addition to their mechanical functions.
- 4. Surfaces are a new source of energy functions.

Reinforced plastics with natural fibers WPC in interior design (Johnson Controls)

Barktex
Fibers of a tree (Barkcloth)

Reinforced plastics with bark fibers laminats made by bark (Barkcloth)

Banana fibres for flooring BananaPlac (Barkcloth)

New sources of raw material

textiles from the skin of the cow stomach (Mandy den Elzen)

Maize Cob Board lightweight with organic waste

Palm Leather gummy biomaterial with leather-like quality (Tjeerd Veenhoven)

Olives-leather

tanning with olive residues (N-Zyme)

Bio-based Chemistry polysaccharides, proteins and fats

- Vegetable raw material provide polymers based on polysaccharides.
 Sugar molecules are long, chain-like compounds: starch, cellulose, chitin
- Animal raw material provide proteins, in which amino acids build up spiral coiled chains. Silk and wool therefore differ fundamentally in the chemical structure of cotton and linen.
- Fats consist of fatty acids and glycerol. Physical properties depend on chain length and frequency of C = C double bonds.

Polymers on base of polysaccharides PLA (NaturWorks)

Polyethylen on base of sugar cane Green PE "Terralene"

Milk protein fabrics organic fibers with antibacterial properties

Polymers on base of vegetable oil polyamid made of castor oil (Evonik Industries)

Chipboard without synthetical resin enzym-based lignin-binder

Protein-based binder FluidSolids

Binder on base of vegetable oil reaserch project of KIT/TESA

Binder on base of glycerol human hair as reinforcing material (Thomas Vailly)

Material on base of bakteria

bacterial cellulose (Susan Lee, BioCouture)

Mushroom also produce fibres foam structures from mycelial fungiaus

Acrylic glass made of sugar PMMA on base of enzyme (Evonik Industries, Helmholtz Gesellschaft)

Algae-based foam Alginsulat (VPZ Graz)

CO₂ Polymers plastics production with greenhouse gas

4 Trends BIOLOGICAL, EFFICIENT, SMART, ENERGETIC

- 1. The organic trend changes from the supermarket in the industrial production.
- 2. The resource efficiency reaches a higher importance than today.
- 3. Materials and surfaces will receive additional qualities beside their mechanical functions.
- 4. Surfaces are a new source of energy functions.

Is the heating still on? thermosensitive wall-papper

Quelle: Shi Yuan

Self-healing surfaces nano-encapsulated adhesive and coating materials (Bayer MaterialScience)

Fragrance microcapsules Brace GmbH

Air cleaning surfaces nanotitandioxide (Nanogate AG)

Organic dye solar cells organic inks (LISICON, Merck)

Heating with carbonnanotubes CNT carbo e-therm (Future Carbon)

-53,6

Non-iron on holiday textiles with memory qualities (Corpo Nove)

DEVELOPMENT

- Product development
- Application scenarios for innovative material
- Innovation-workshop

CONCULTING

- Identification of innovative and sustainable material
- Identification of producers
- Alternative production technologies

COMMUNICATION

- Development of communication media
- Events and conferences
- Publications and speeches

Sustainable Material Design for Automotive Interiors

automotive interiors EXPO 2012, Stuttgart

Dr. Sascha Peters HAUTE INNOVATION – Agentur für Material und Technologie

