

Low-Voltage Hybridisation for Affordable Fuel Economy & Drivability

October 2012 Nick Pascoe, CEO

Themes

- Convergence of Global standards for fuel economy/CO₂
- Mechanical Energy Recuperation:
 - the next focus for CO₂ reduction
 -at 48V?
- Exhaust Gas Energy Recuperation
 - feasibility and benefit validation?

Company Profile

Engine Expo Stand E218

CPT Created March 2007

- Products, Technology and Facilities acquired from Visteon Corporation.
- Licence for Switched Reluctance Motors from Emerson Corporation (now Nidec)

Organisation

- Experienced management and technical team, many ex-Visteon.
- German entity created mid-2010.
- VTES (automotive electric supercharger) business sold to Valeo December 2011.
- Post sale to Valeo: 32 employees.

Competencies

- Powertrain development & application.
- Power Electronics development.
- Control Electronics and Software development.
- Automotive Industry Design/Validation.

Product Portfolio

COBRA Heavy Duty, Water Cooled Electric Supercharger

CPT SpeedStart[®] Integrated Starter/Motor & Generator **TIGERS** Exhaust Gas Energy Recovery Turbine

Integrated Electronics

- Control electronics
- Power electronics (water cooled)

Drivers for Change Legislation

105

1 200

1 300

- 27% further reduction by 2022.
- Larger vehicle brands may not have the benefit of 'Average Mass' skew in the future?

2010 OEMs Average Emission and Weight-based Emission Targets 2015 (source: eea.europa.eu)

1 400

Average mass (kg)

1 500

1 600

1 700

Estimated 2020 Costs to Customer per % of CO2 and Cumulative CO2 reduction (%)

1. Estimated 2020 price to customer before VAT. Assume 1% decrease in manufacturing costs from 2010 to 2020 and OEM mark-up ranging between 50 to 100%; shown for D segment in North America. Expect minor variances by segment and region

Source: Boston Consulting Group, 2011 report "Powering Autos to 2020"

Engine Expo Stand E218

Hybrid Technology Options

0000000000

System ► Metric ▼	Micro Hybrid	Mild Hybrio	ł	Full Hybrid	Plug-in Hybrid	
Voltage	12V	24-130	V	200-600V	300-400V	
e-Motor Power	3kW	10-15k\	V	Excludes potential <u>additional</u> engine down-speeding/ down-sizing benefits (eg 30% smaller = -15% CO ₂)		
Regen. Power	0.5-3.0 kW	~10 kV	/			
Launch Assist	0	<15kW				
e-Drive Range	0	8				
Customer on-cost	\$275- 1,240	\$1,040 6,870	-	\$8,250- 11,000	\$16,500 - 20,600	
CO ₂ Benefit %	4 -7 %	6-10%		10-15%	15%	
Customer Cost/ Benefit	\$40 - 310/1%	\$104- 1,1 1%	45 /	\$550- 1,100 /1%	\$1,100- 1,380 /1%	
	Target Market <60 volts		fı	uture	Engine Expo	
Source: Various EU publications/papers with € converted to \$						
Delivering CO ₂ Reduction Technologies CPT Confidential and Proprietary Information. Do not reproduce without permission.						

Energy Harvesting & Usage

0000000

Efficiency of the ISG chain

Recuperation energy potential in NEDC

[vehicle mass 1450kg; parallel braking with travel dead end]

Electrical Energy Usage Stand E218

- Vehicle energy demands already exceeding 12V/3kW alternator.
 - Powertrain & Chassis Systems
 - Passenger Safety, Security & Comfort Systems
- Hybridisation includes the use of controllable, electrical devices to reduce energy demands:
 - Cooling fans,
 - Water pumps,
 - Electric Power Assisted Steering, etc.
- Higher power electrical devices would benefit from higher voltage systems
 but:
 - >60V requires much greater safety consideration.....
 - ...leading to significant cost increase.

48V provides an ideal compromise for performance and cost.

48V Specification for Motor/ generator

Specification still evolving but real pressure to conclude quickly.

CPT SpeedStart®

Mechanical/Kinetic Energy Recuperation

Overview – 12V

Engine Expo Stand E218

Features

- > 12V High Power, Fully Integrated Belt Driven Starter Generator
- Liquid cooled system including power & control electronics

CO₂/FUEL ECONOMY BENEFITS

- ➤ Stop-Start + Efficient Generation: 5 20%
- Stop-Start + Regeneration: 8 − 25%

DRIVER BENEFITS

- ➢ High Torque, Fast Response
- Desirable, 'Comfort' Stop-Start
- Unique 'Driver Change of Mind' capability
- Efficient, High Current Generator

AVAILABILITY

≻2015

Delivering CO₂ Reduction Technologies

48V Scaled Machine Design

- Designed to be scaled from day one
- Re-use of existing rotor and stator laminations
- Re-use of HPDC housing and cooling system
- Electronics scaled
 - Voltage specification increased (Caps and FETs)
 - Power supply redesigned
 - New op-amps / gate drivers specified
- ➢Nominal Performance Targets at 48∨
- 10kW ≻5kW Generation Power 30s
- 10kW >7.5kW Motoring Power for up to 5 seconds
 - ➢Up to 95Nm break away torque

Engine Expo Stand E218

Delivering CO₂ Reduction Technologies

Electric Launch Assist and/or Drive with Load Point Moving Example for Electric Launch Assist (Acceleration) in NEDC Selected electric launch events 140 · 8 120 -6 6 EM Mechanical Power [kW] 100 -EM Mot Max Power [kW] Velocity [km/h] 80 2 2 60 0 40 -2 -2 20 -4 0 --6 -6 -20 -8 -8 60 80 100 120 20 40 140 160 180 Λ Time [s] 140 120 ty [km/h] 100 Threshold for max. E-Machine power

Simulation results courtesy of AVL Schrick GmbH

Engine Expo Stand E218

Time [sec]

Electric Launch Assist and/or Drive with Load Point Moving

-01 0

Engine Expo Stand E218

-

Delivering CO₂ Reduction Technologies CPT Confidential and Proprietary Information. Do not reproduce without permission.

Stand E218

ALABC/LC SuperHybrid

Performance vs Fuel Economy

Source: Company websites & LC SuperHybrid testing & simulation

System Level Constraints

Belt Drive

- Belt & Tensioner technology.
- Dynamic response.
- Cold temperature performance.
- 48V torque/power capability.

Battery/Energy Storage

- Cost
- Weight
- Recuperation characteristic.
- Durability

Delivering CO₂ Reduction Technologies

CPT TIGERS

Exhaust Gas Energy Recuperation

00000

TIGERS Design Challenges

High/Limited Speed Shaft ~ 60k rpm

Heat Dissipation from Motor Core

Very Low Back Pressure Expander

Integrated Power/ Control Electronics temperature Limited ~ 120 Deg C

Bearings temperature Limited ~ 190 Deg C

HOT GAS ~ 800 Deg C

Windings temperature Limited ~ 180 Deg C

.....

Engine Expo Stand E218

Delivering CO₂ Reduction Technologies

UK TSB funded 'VIPER' Project

- TIGERS targeting 2-4kW.
- Comparison with Thermo Electric Generators (TEGs) – system cost for TEGs remains a major issue.
- TIGERS-V platform will be used to develop:
 - Sensing system capability study
 - Stator and rotor design for steady state
 - Low Pressure Ratio High Efficiency Turbine optimisation
 - Bypass system design and development

TIGERS Design Specification

9000000

Design Specification	TIGERS-H	TIGERS-V		
Maximum Speed	63,000 rpm			
Peak Shaft Power	1kW	2kW - 4kW		
System Voltage	12v	12v/24v/48v		
Generating Efficiency	>70%			
Bearings	Sealed for life rolling element			
Rotor Position Control	Digital			
Machine Weight	~10kg			
Machine Length	~150mm			
Cooling System Engine coolant				
Power Electronics & Control	Integrated			
Bypass System	Full flow			

Engine Expo Stand E218

Current Status

Engine Expo Stand E218

- Validating simulation results.
- Developing by-pass and control system.
- Preparing for vehicle installation (February 2013)

Considerations for Recuperation

- Operating Cycle
 - Validation
 - Certification
 - Customer value
- Requirements definition
- Electrical Architecture
 - Voltage
 - Energy storage technology
- Control System Integration
- > Thermal management

Delivering CO₂ Reduction Technologies

Low-Voltage Hybridisation for Affordable Fuel Economy & Drivability

October 2012 Nick Pascoe, CEO