

Lessons Learned On the road to converting metal to plastic

Michael Kole Pinnacle Sales, LLC

Scope

- Marketing & Sales Agency
 - Sales Representation
 - Marketing Plans
 - Product Development
 - Business Coaching & Training
- Specializing in engineered components such as;
 - Fuel pumps & systems
 - Turbine, Gerotor, and Screw Pump technology
 - Water & Oil pumps
 - Electronic Throttle Body
 - Housings & Complex Covers
 - ABS Brake Systems
 - Electronic Control Units
 - Housings & Connectors
 - Compliant Pin Technology

Principals

- Helvoet Rubber & Plastics
 - Belgium, Holland, India
 - Thermoplastic, Thermoset, and Rubber Precision Parts
 - <u>www.helvoet.com</u>
- Microplastics Inc.
 - St. Charles (Chicago), Illinois
 - Precision insert molding
 - Compliant Pin
 - www.microplasticsinc.com
- Leistritz
 - Nuremberg, Germany
 - Screw Pump Technology
 - <u>www.leistritz.com</u>
- ► iNMAR
 - Detroit Area
 - Advanced Product Development Firm
 - From Napkin to the Assembly Line

Helvoet

Vacuum Actuators

Vacuum Connectors Custom Check Valves

Electronic Throttle Body's and Air Control Valves

Thermostat Housings

Fuel Pump Chambers

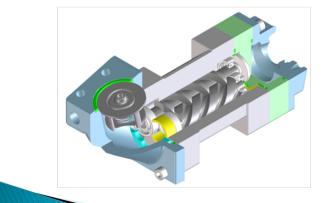
Hydraulic Solenoid Housings

Microplastics

Precision Insert Molding

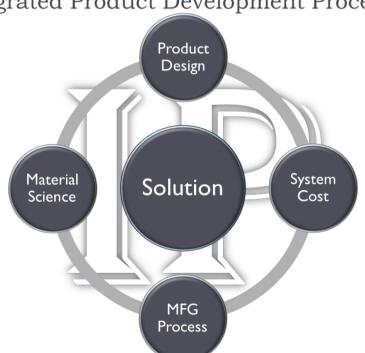
- ETC Covers
- Sensors
- Filters
- Compliant Pin

Complex Products


- Lead frame development
- Cure in place gaskets
- Product development
- Automated Assembly

Leistritz

- High Efficiency pumping chambers for
 - Diesel Pumps
 - Gasoline Systems
 - SCR Systems
 - Precision Dosing
 - Metering Systems
- Efficiency
 - >60% for Screw Pump Technology
 - Compare to 20-24% for Turbine & Gerotor

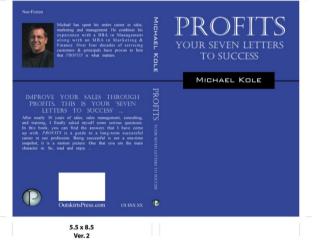


iNMAR

Integrated Product Development Process

- Product Design
- Material Science
 Development
- Manufacturing Process
 Selection and Development
- System Cost Monitoring
- Intellectual Property Generation

The fastest route to new product development failure is to focus on one critical area at a time



Coaching & Training

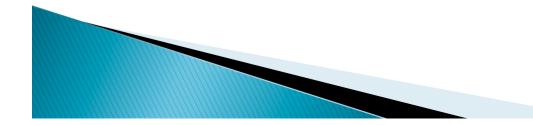
Building Credibility

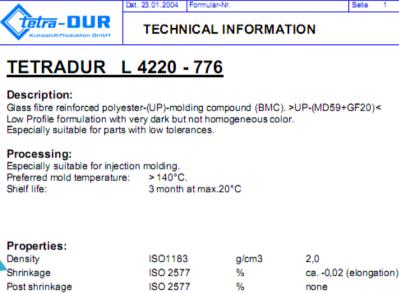
Product Focus

- Powertrain Components
 - Composite Throttle Body
 - Fuel Systems
 - Vacuum & Turbo Actuators
 - Vacuum Systems, Custom Housings & Connectors

History of Composites

- Introduced in 1990's, mainly thermoplastic materials; PEI, PPA, PPS, PBT
 - Mechanical Throttle Bodies
- Electronic Throttle Body proliferation began
 - Thermoplastic materials could not meet the dimensional challenges
 - Roundness, True Position
- Early 2000's BMCI Thermoset material chosen
 - Best in class material for;
 - Cost, Dimensional stability, weight reduction & application feasibility
- BMCI/Tetradur introduction of a <u>"0" Shrink Material</u>





Preferred Materials

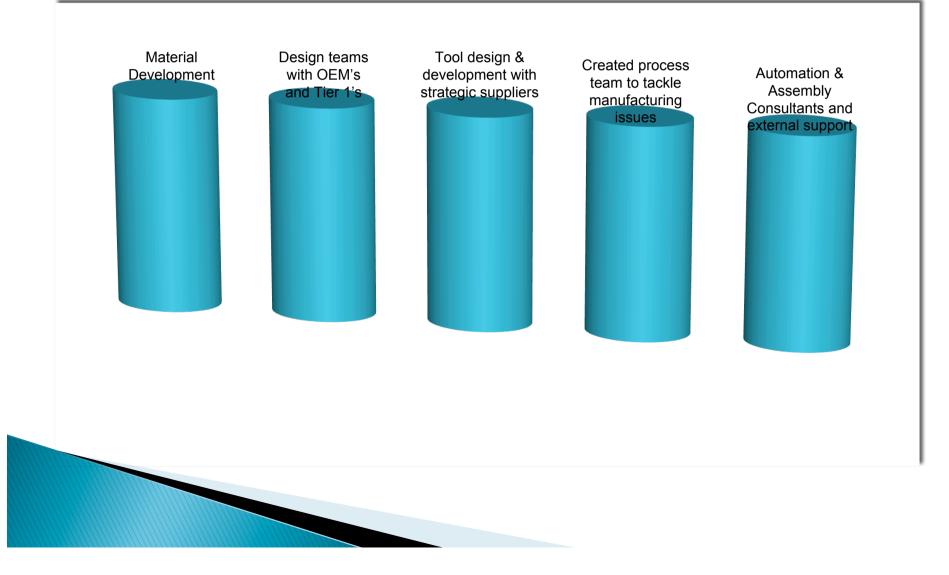
- BMCI / Tetradur
 - L4220-776
- Key Elements
 - Post Shrinkage 0%
 - Flex Modulus 12 MPa
 - CLTE (comparable to AI)
 - Water Absorption (very low)

All leading to high dimensional stability for process & life of product

Post shrinkage	ISO 2577	%	none	
Rexural strength	ISO 178	MPa	110	
Flexural modulus	ISO 178	MPa	12.000	
Impact strength	ISO 179	kJ/m ²	35	
Notched impact strength	ISO 179	kJ/m ²	35	
Compressive strength	ISO 604	MPa	150	
Tensile strength	ISO 527	MPa	40	
Thermal expansion	VDE 0304/T.1	10 ⁻⁶ K ⁻¹	ca. 18	
HDT - A	ISO 75	°C	> 250	
Inflamability	UL subject 94 dass		HB	
Water absorption	ISO 62	mg (1d)	< 40	
Surface resistivity	IEC 60093	Ω	10 ¹²	
Volume resistivity	IEC 60093	Ωcm	10 ¹⁴	
Dissipation factor	IEC 60250		< 0,05	
Dielectric constant	IEC 60250		ca. 4,5	
Electric strength (1mm)	IEC 60243	kV/mm	20 - 30	
Tracking resistance	EC 60112	CTI	600	
Glass transition temperature	DMA	°C	185	
Tensile rupture strain	ISO 527	%	0,3	
Poison's ratio	ISO 527		0,3	
Outer fiber strain	ISO 178	%	1,2	

Initial challenges

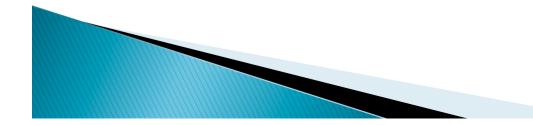
- ETC's were originally designed for aluminum, not plastic
 - Tolerance, Application Requirements, Durability
- Unable to predict the material flow
 - Knit lines, proper gating, hot spots
 - Unable to identify internal porosity
- Questions on mounting (torque, inserts, creep)
- High Level of Scrap
- Unacceptable cycle time

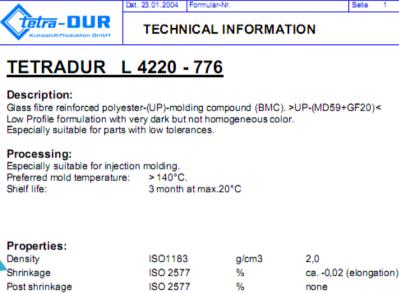


Improvement Teams

Helvoet specific projects for improvement

- Partnered with BMCI to develop an improved material
 - Higher flow & more consistency batch to batch PREDICTABILITY
 - Developed with the support of BMC & Corex Software highly accurate Mold Flow Analysis
- Combined efforts with our Tier 1 customers to develop and understand design rules for;
 - Application requirements, molding parameters, strength and assembly issues
 - Answered questions about what the application needs, not what aluminum can do
- Developed a strategic supply base for tool design & development
 - Created exclusive cooling, cleaning, and vacuum systems
 - Implemented cold runner design
 - Initiated aggressive PM and developed special coatings to extend tool life
- Formed internal team to define a robust molding & manufacturing process
 - Reduction of cycle time by over 40%, elimination of handling damages, placement of pressure sensors, and closed loop processing reduced scrap by 80%
 - Developed extensive math models and improved predictability leading to high capability
- Working with outside specialists for automation,
 - Designed and implemented; automated system to reduce burr and surface porosity
 - Critical leak testing procedures
 - Qualified vendors for fastening and developed specifications for mounting

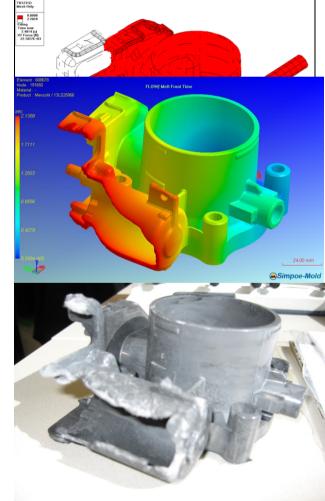




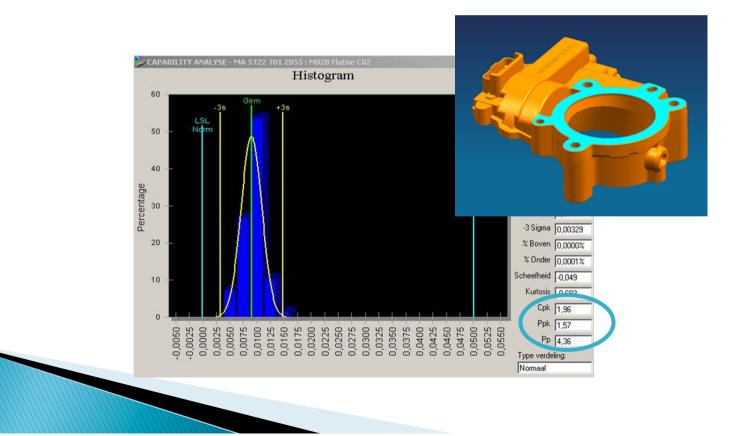
Preferred Materials

- BMCI / Tetradur
 - L4220-776
- Key Elements
 - Post Shrinkage 0%
 - Flex Modulus 12 MPa
 - CLTE (comparable to AI)
 - Water Absorption (very low)

All leading to high dimensional stability for process & life of product

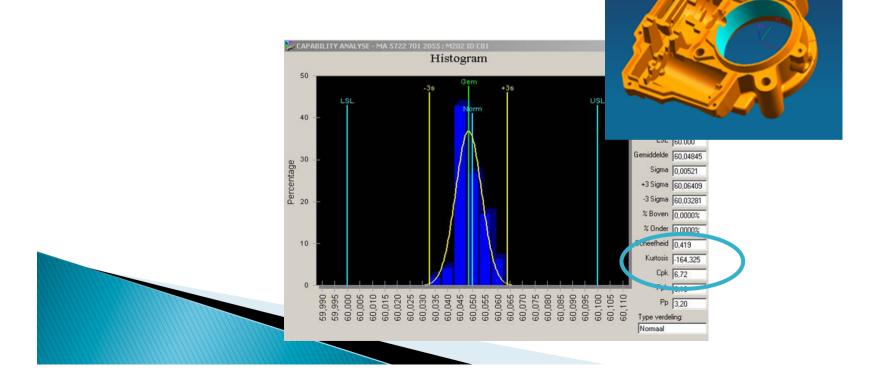

Post shrinkage	ISO 2577	%	none	
Rexural strength	ISO 178	MPa	110	
Flexural modulus	ISO 178	MPa	12.000	
Impact strength	ISO 179	kJ/m ²	35	
Notched impact strength	ISO 179	kJ/m ²	35	
Compressive strength	ISO 604	MPa	150	
Tensile strength	ISO 527	MPa	40	
Thermal expansion	VDE 0304/T.1	10 ⁻⁶ K ⁻¹	ca. 18	
HDT - A	ISO 75	°C	> 250	
Inflamability	UL subject 94 dass		HB	
Water absorption	ISO 62	mg (1d)	< 40	
Surface resistivity	IEC 60093	Ω	10 ¹²	
Volume resistivity	IEC 60093	Ωcm	10 ¹⁴	
Dissipation factor	IEC 60250		< 0,05	
Dielectric constant	IEC 60250		ca. 4,5	
Electric strength (1mm)	IEC 60243	kV/mm	20 - 30	
Tracking resistance	EC 60112	CTI	600	
Glass transition temperature	DMA	°C	185	
Tensile rupture strain	ISO 527	%	0,3	
Poison's ratio	ISO 527		0,3	
Outer fiber strain	ISO 178	%	1,2	

Using technology for predictability 2004 - 2011



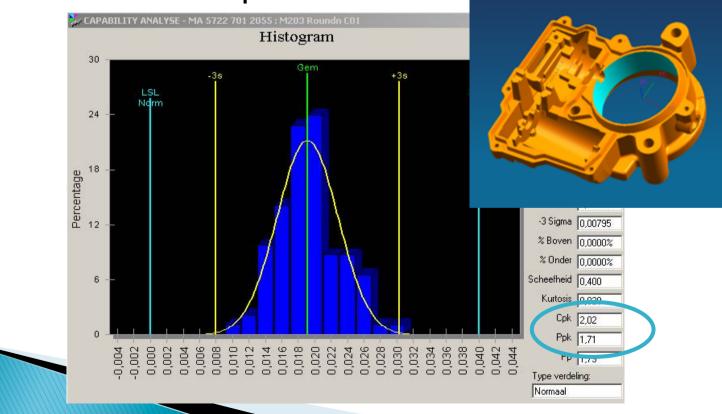
Predictability leads to higher accuracy

Flatness: 25 µm's (+/- 3 Sigmas)



Predictability leads to higher accuracy

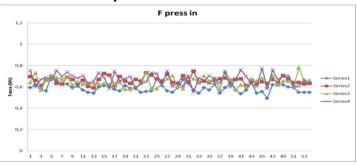
- Bore Diameter: 60.05
 - 1.67 Cpk = +/- 0.030

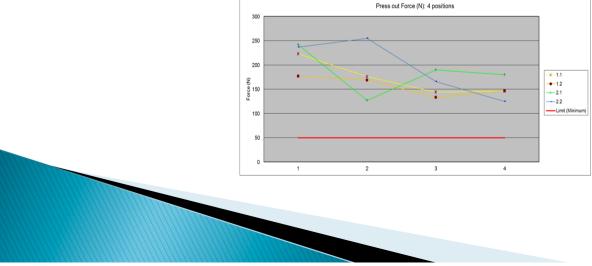


Predictability leads to higher accuracy

Roundness: 30 µm's

Collaboration with OEM's and Tiers produced application requirements, leading to guidelines ...


- Max torque on mounting holes
 - > 20Nm
- Unequal wall thickness is okay
 - Allows for strengthening areas
 - Mounting bosses for example to eliminate compression limiters
 - Transitions from 3mm to 9mm
- ▶ Tg 190° C
- Design with tolerances in mind
 - Bore diameters < 84mm
 - +/- 3 Sigma; 35µm's
 - Roundness
 - +/- 3 Sigma; 30µm's
- Flatness for mounting & sealing surfaces
 - 25µm's



Guidelines...

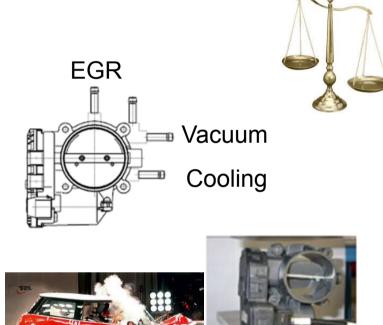
- If compression limiters are not designed out of the housing ...
 - Use crush ribs with a press in force of 400N–900N

Press out force of 50N minimum



Guidelines (attachments)

- Ejot self tapping screw in BMC
 - Design rules:
 - Hole diameter = 0,8 x d1
 - Tread length= 2 x d1
 - Experience of our BMC supplier: Ejot Delta PT 4mm
 - Optimal inner diameter: 0,83 x d1 = 3,32 mm
 - Recommended length: 3 x d1 = 12 mm
 - Max Torque:
 - 5,5Nm +/- 0,7 Nm needed to tap the thread
 - Max Clamping force: 3,1 KN

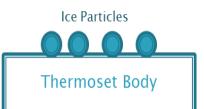


Advantages of Composite Housings

- Weight Savings
 - 15-25% Compared to Aluminum 0
 - Lower Vibration Stress on the Manifold 0
- Function integration & increased design freedom
- Crash Performance:
 - Energy absorption in crash testing 0
 - Engine design OK for Above Beltline Locations
- Noise reduction
 - Lower vibration = less noise 0
 - Less stress on manifold, cost can be reduced in this area

Advantages of Composite Housings

- No Icing issues
 - Lower CLTE
 - No Water Heating Necessary
 - Lower system costs
 - Simplification of control system, downsize of electric motor
 - No ice break system required in controller
- Chemical resistance
- Shorter process flow in comparison to alum
- Longer tool life
 - Significant improvement ratio of tooling investment over tool life
- Price reduction,
 - Up to 25% savings compared to aluminum



Difficult to remove without using ice breaking in system

.

 Slow melting point due to high temp transmission of Al

- Very easy to break away
- Fast melting point due to low temp transmission of plastic

Continuous Improvement

ltem	2005	2006	2007	2008	2009	2010	2011	Future
Cycle Time								
Tool life								
Bore Tolerance								
Roundne ss								
Scrap								
Price	€ 3.90			imensions in Mil Thermoset Hous		-		€ 1.99
			Dased UII	memoset nous	sing ~ 200 grams	5		

Summary

- Composite throttle bodies have proven themselves as a robust solution
 - Over 10 Million housing parts installed
- Financial advantages can significant
 - Component costs lower than aluminum
 - Systems costs lower
 - Roadmap to further savings is defined
- Regardless of intended assembly location, Helvoet can offer localization opportunities
- It took 30-years to get aluminum housings to today's precision
 - The evolution of the composite throttle body has caught up in less than 7 years!

Offer ...

Interested companies please contact ...

Pinnacle Sales, LLC

418 Main Street, Suite 6 (734) 516-0221 <u>mkole@pinnaclesales-llc.com</u>

