

October 23-25, 2012 | The Suburban Collection Showplace | Novi, Michigan

Developing Drivetrain Robustness for Small Engine Testing

Presented by

Marek Tatur, FEV Inc.

Dean Tomazic, Tom Jackson, Marcel Picard, Hans-Dieter Sonntag, Norbert Wiehagen, FEV Group

October 12, 2012

Contents

- The Challenges
- Typical Failures
- Traditional Approach
- Alternative Approach Discussion
- Examples
- Outlook

Free Forces for Different Engine Architectures

	Туре					╋╋╋ ┶ ┶	Cas 110	b V-90°
Free forces	1. Order	F ₀₁						
	2. Order	F ₀₂	2 · F ₀₂		$4 \cdot F_{02}$			
Free moments	1. Order		F ₀₁ · a	√3 · F _{o1} · a				√10·F ₀₁ ⋅ a *
	2. Order			√3 · F ₀₂ · a			2 · F ₀₂ · b	

Source: Univ.-Prof.Dr.-Ing. S. Pischinger: Internal Combustion Engines

Tangential Forces and Harmonics (Four Stroke Engine)

Source: Univ.-Prof.Dr.-Ing. S. Pischinger: Internal Combustion Engines

© by FEV – all rights reserved. Confidential – no passing on to third parties

Small Automotive Engines Production Examples

Manufacturer	Cylinders	Displacement [ccm]	Performance Metrics	Speed [rpm]
PEUGEOT	3	999	51 kW 95 Nm 12 bar BMEP	6000 3000
	3	999	45 kW 95 Nm 12 bar BMEP	5200 3000
Ford	3	999	93 kW 170 Nm 21 bar BMEP	5000 1400
HYUNDRI KIA MOTORS	3	998	51 kW 95 Nm 12 bar BMEP	6200 3500

Small Automotive Engines Production Examples

Manufacturer	Cylinders	Displacement [ccm]	Performance Metrics	Speed [rpm]
τογοτα	3	998	51 kW 93 Nm 12 bar BMEP	6000 3000
BRABUS	3	999	76 kW 147 Nm 18.5 bar BMEP	6000 2500
FIRT	2	875	73 kW 95 Nm 13.6 bar BMEP	5500 1900

Setup Example of a Single Cylinder Engine

Setup Example of a Single Cylinder Engine

Setup Example of a Single Cylinder Engine

Engine

Driveshaft

Torque Measurement

Dynamometer

Torsional Failure of a Driveshaft of a Single Cylinder Engine

Torsional Failure of a Driveshaft of a Single Cylinder Engine

Torsional Failure of a Power Generator

12

Source: Diesel and Gas Turbine Worldwide, November 2011

Multi-Step Multi-Body-System Calculation

Multi-Step Multi-Body-System Calculation

Torsional Vibration Comparison – High-Fidelity MBS Calculation

Torsional Vibration Comparison – High-Fidelity MBS Calculation

Torsional Vibration Comparison – High-Fidelity MBS Calculation

Alternative Approach

Low Fidelity MBS – Software Layout

Basic component data (if this data is not available, a database can be consulted offering scatterbands from known engines with similar design characteristics)

Cylinder pressure data (if pressure traces are not available, a function generator will create pressure traces using a provided peak cylinder peak

Alternative Approach

Low Fidelity MBS – Software Layout – Output

Results

Comparion High-Fidelity versus Low Fidelity MBS

* These resonances would actually occur under real-world steady-state conditions © by FEV – all rights reserved. Confidential – no passing on to third parties 2

Results

Comparion High-Fidelity versus Low Fidelity MBS

* These resonances would actually occur under real-world steady-state conditions © by FEV – all rights reserved. Confidential – no passing on to third parties 21

Results

Driveshaft Vibration Comparison

Accelerometer placed on shaft end of the dynamometer

Outlook

- An alternative approach to high-fidelity MBS calculations proves to offer reliable data to design robust test cell driveline systems for low cylinder count engines in test cell environment
- Contrary to conventional MBS calculations the low-fidelity software does not require specialized system knowledge and can be operated by operations engineering staff after brief training/introduction
- Low-fidelity software allows to generate results very quickly resulting in substantial time/cost savings during test cell setups
- Low-fidelity system is not a replacement or substitution for highfidelity systems – it represents a shortcut to allow quick and safe test cell setup and operation
- The alternative approach was verified in multiple projects and proved to provide robust and reliable results
- Database with existing main parameters allows to process engine configurations with no existing data or information

Thank you for your attention

