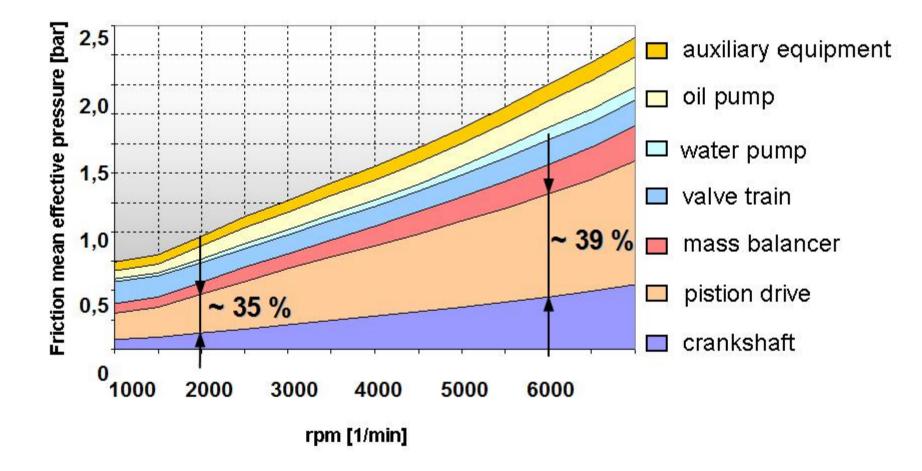


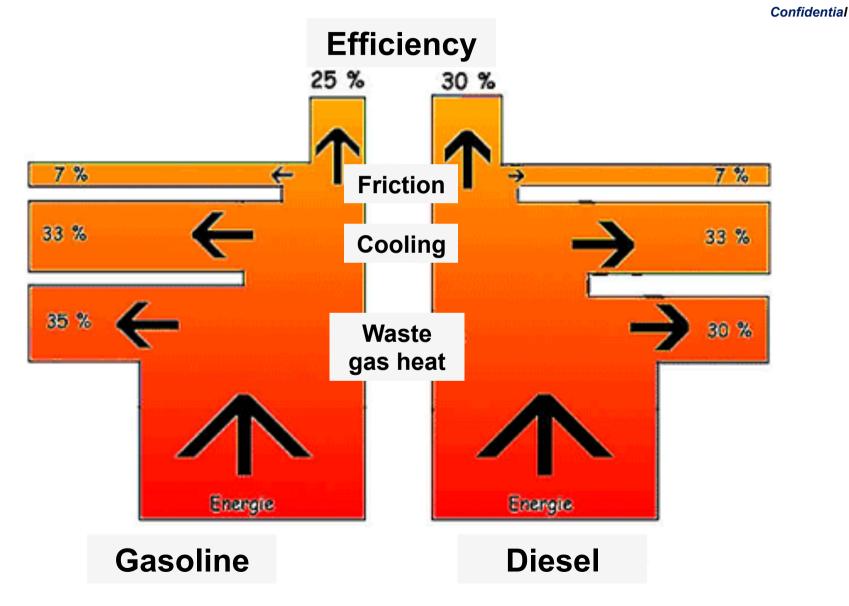
Coatings for fuel cell and super low-friction applications

K.Preinfalk¹, G. Eitzinger¹, Katrin Zorn¹, H. Sun¹, K. Cooke¹, P. Hamilton², B. Pollet², O. Jantschner³, C. Mitterer³ - 26.10.2012
1) MIBA Coating Group, 2) University of Birmingham, 3) University of Leoben htc@miba.com



Agenda

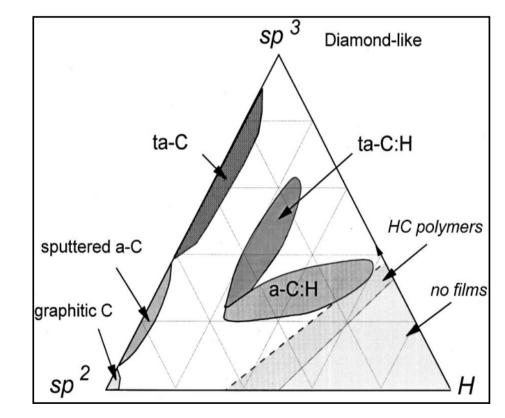
- Motivation
- High Temperature DLC
- Coatings for Fuel Cell Applications
- Summary



Source: A.Merkle, M.Werner, Technical University of Munich, Institute of Combustion engines ©2008-2009

Efficiency Combustion Engine

Agenda



- Motivation
- High Temperature DLC
- Coatings for Fuel Cell Applications
- Summary

Diamond like carbon (DLC) How to tune?

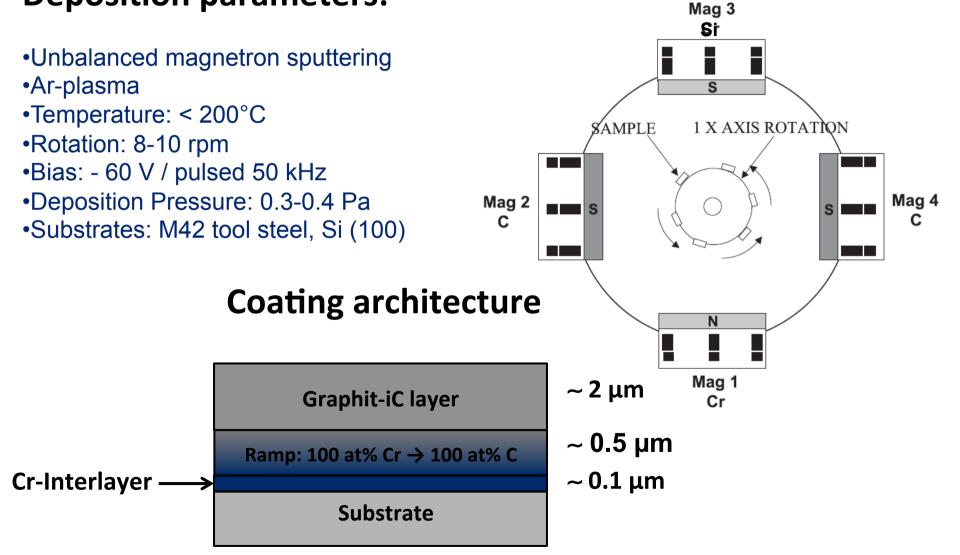
- Deposition Temperature:
 - Higher sp3-content, above 300°C up to 80%
 - Higher hardness
 - Higher intrinsic stresses
- Bias Voltage:
 - Higher sp3-content
 - Higher hardness
 - Higher intrinsic stresses
- Addition of metallic species:
 - Effects oxidation resistance
 - Is able to stabilize sp³
- Addition of H, N, O

Miba

Diamond like carbon (DLC) Classification

Confidential

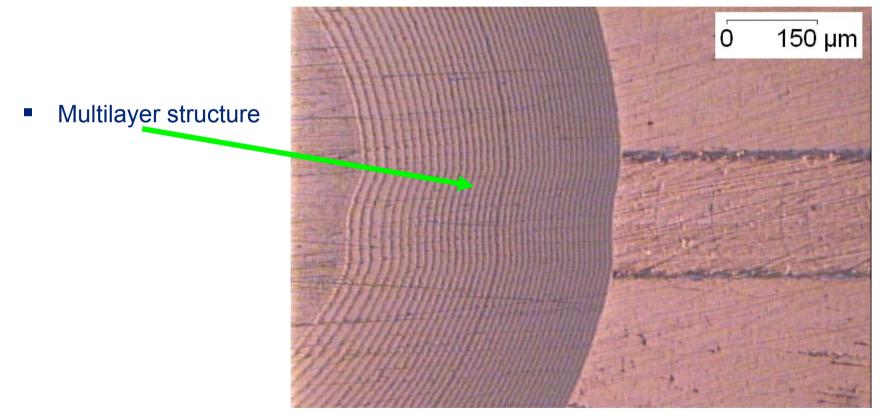
Table 1. Classification of carbon films; see also explanatory material in the text


							Carbo	n films						
Designation	1 Plasma polymer	2 Amorphou (diamond-l	s carbon films ike carbon film	ms/D/LC)					3 Crystalline carbon film s					
	films										Diamond film	5		Graphite films
Thin film/ thick film	Thin film				Thin film			Thin film Th			Thick film (f	Thick film (freestanding) Thin		
Doping,		hydrogen-free			hydrogenated				undoped c		doped	undoped	d doped	undoped
Additional elements				modified with metal			moo with metal	dilied with non- metal						
Crystal size on the growth side					(amorphous)				1 nm to 500 nm, nanocrystal- line	0,5 µm to 10 µm, micro- crystalline	0,1 μm to 5 μm	(5 μm to) 80 μm to 500 μm	80 μm to 500 μm	
Predominat- ing C-C bond type	sp ² or sp ³ , lin- ear bond	sp ²	sp ^a	sp ²	sp ² or sp ³	sp ³	sp ²	sp ²	sp ³	sp ³	sp ³	sp ³	sp ³	sp ²
Film no.	1	2.1	2.2	2.3	2.4	2.5	2.6	2.7	3.1	3.2	3.3	3.4	3.5	3.6
Designation	Plasma poly- mer film	Hydrogen- free amor- phous car- bon film	Tetrahedral hydrogen- free amor- phous car- bon film	Metal-con- taining hydrogen- free amor- phous car- bon film	Hydrogen- aled amor- phous carbon film	Tetrahedral hydrogen- ated amor- phous carbon film	Metal-con- taining hydrogen- ated amor- phous carbon film	Modified hydrogen- ated amor- phous carbon film	Nanocrystal- line CVD dia- mond film	Microcrys- talline CVD diamonci film	Doped CVD diamond film	CVD dia- mond	Doped CVD diamond	Graphite filr
Recom- mended abbreviation	-	a-C	ta-C	a-C:Me (Me = W, TI)	a-C:H	ta-C:H	a-C:H:Me (Me = W, Ti)	a-C:H:X (X = Si, O, N, F, B)	-	-	-	-	-	-
Other desig- nations com- monly encountered but which should no longer be used		DLC, graph- ite-like car- bon	DLC, i-C, dia- mond, amor- phous diamond	Me-DLC, DLC	DLC, a-DLC, hard carbon	DLC	DLC, Me- DLC, Me- C:H, MeC:H, metal-carbon	DLC	PCD, PD, NCD	PCD, PD	PCD, PD	Diamord ceramic, "IFD	Diamond ceramic	1000
Deposition methods	PA-CVD	PVD	PVD	PVD	PVD, PA-CVD	PVD, PA-CVD	PVD + PA- CVD, PA- CVD	PVD + PA- CVD, PA- CVD	Activated CVD	Activated CVD	Activated CVD	Activated CVD	Activated CVD	CVD, PVD

Miba

Confidential

High Temperature DLC Deposition


Deposition parameters:

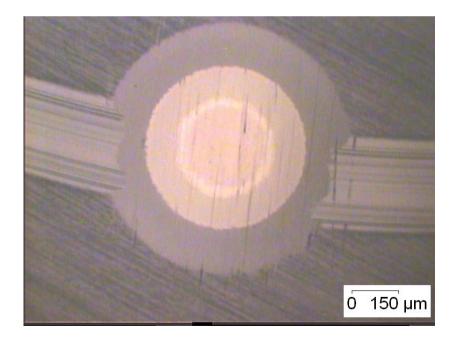
Increase of loadability with Multilayer

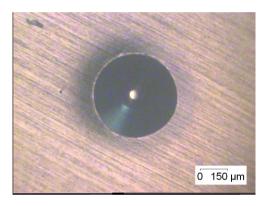
Confidential

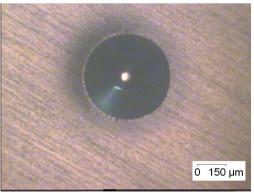
Example of a multilayer structure

Crack stops in the ductile multilayer

in Motion Milba

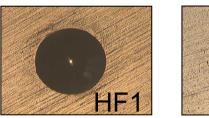

HT DLC Pin on disc - Rockwell

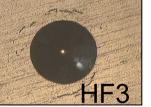

Confidential

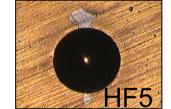

CrN =1.51µm, Gr-iC =3.30µm Total = 4.81µm

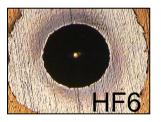
POD at 80N Spec Wear rate = $4.26 \times 10^{-17} \text{ m}^3/\text{Nm}$

Hardness : 2080 HV (Calculated)


Rockwell C Adhesion Test


Confidential




 Adhesion criteria developed by the Union of German Engineers (VDI)

HF-1	HF-2	HF-3	HF-4	HF-5	HF-6

Test parameters:

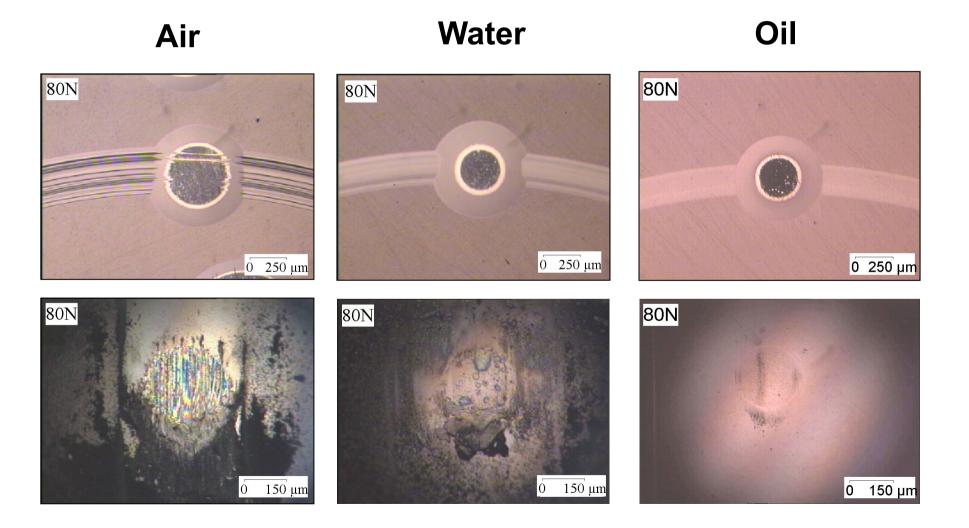
- Substrate hardness min. 54HRC
- ■Coating thickness max. 5µm
- Magnification x100

HT DLC – Scratch Test

Confidential

CrN =1.51µm, Graphitic_iC_HT =3.30µm Total = 4.81µm

be the second s

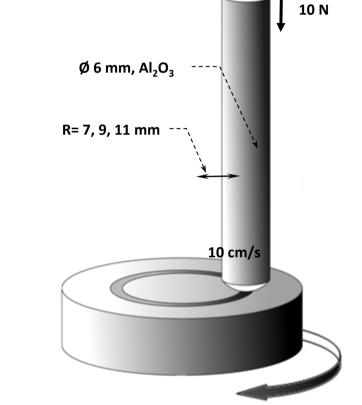

Scratch to 80N

Miba

Confidential

HT DLC – Different Media

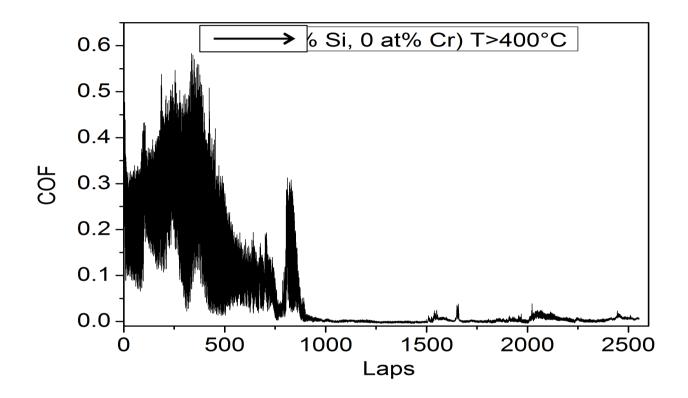
Pin on Disk Test Resultate bei 80N gegen WC-Co Pin



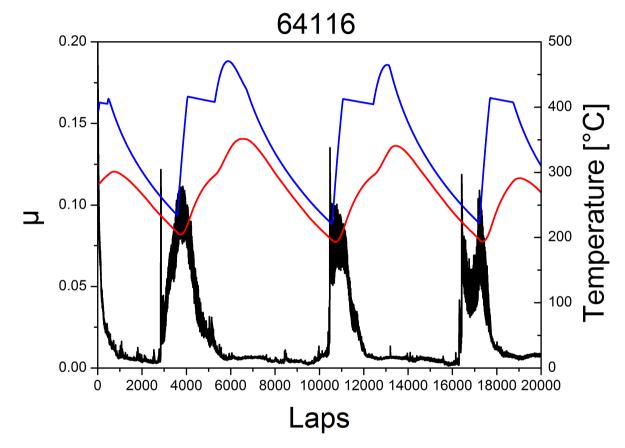
High Temperature DLC – Wear test

CSM Tribometer, Ball-on-disk configuration Ball: Al2O3, 6 mm Ø Load: 10 N Temperature: RT, 250, 325, 400°C Sliding distance: 1000 m (RT) 100 m (250, 325, 400°C) Linear speed: 10 cm/s Wear track radius: R = 7 mm (RT)R = 9 mm (250°C) $R = 11 \text{ mm} (325^{\circ}C)$ R = 13 mm (400°C)

Acquisition rate: 10 Hz

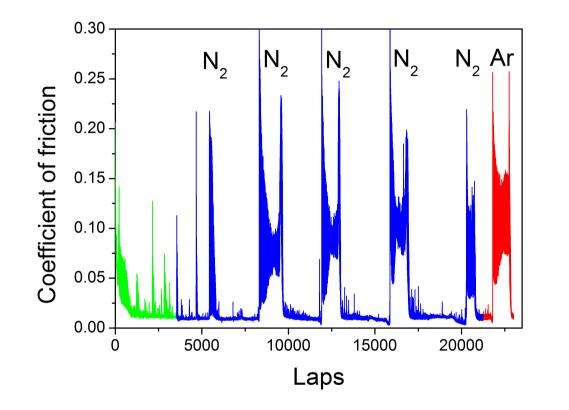

Profilometer for wear track analysis

Veeco white light profiler Calculation of the Wear Rate


HT_DLC Temperature > 400°C

- ➢ Si addition leads to very low friction especially at T>250°C
- Si-O-C sliding film formation in oxygen containing environments
- ➢ Low friction effect is stable up to 450°C

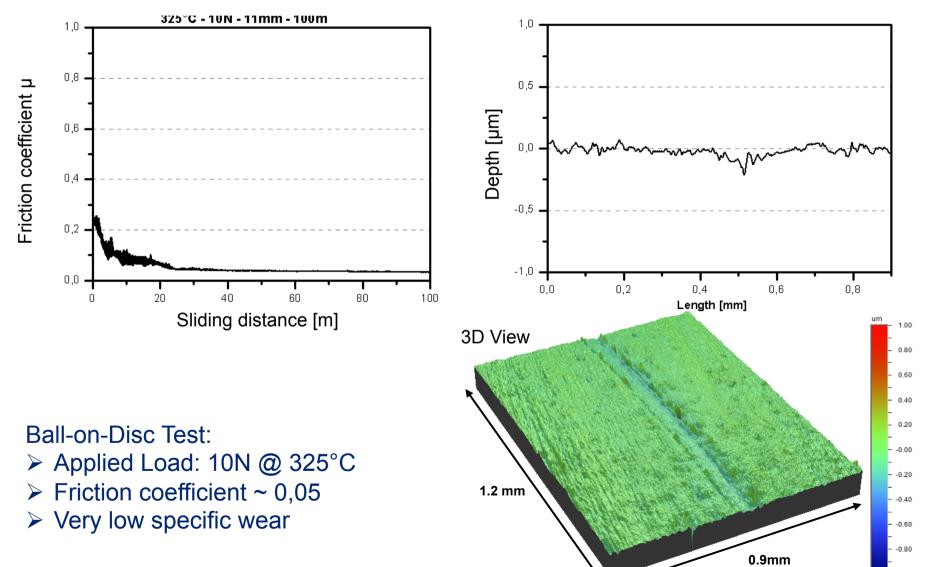
HT_DLC – Temperature versus COF



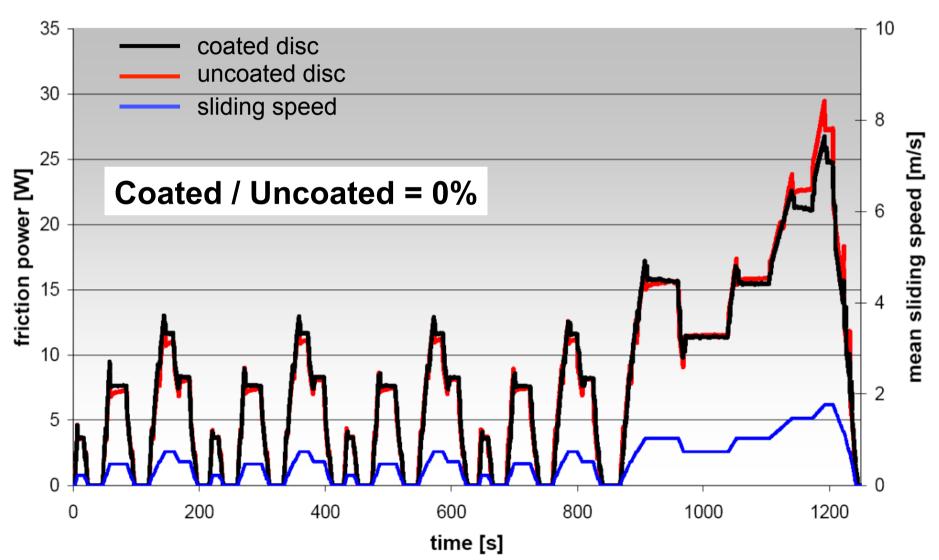
- Si-O-C sliding film formation is thermally activated
- \blacktriangleright Increasing Si-Content \rightarrow higher Tmin
- Temperature range of sliding film formation between 220 and 240°C

Confidential

T=250°C

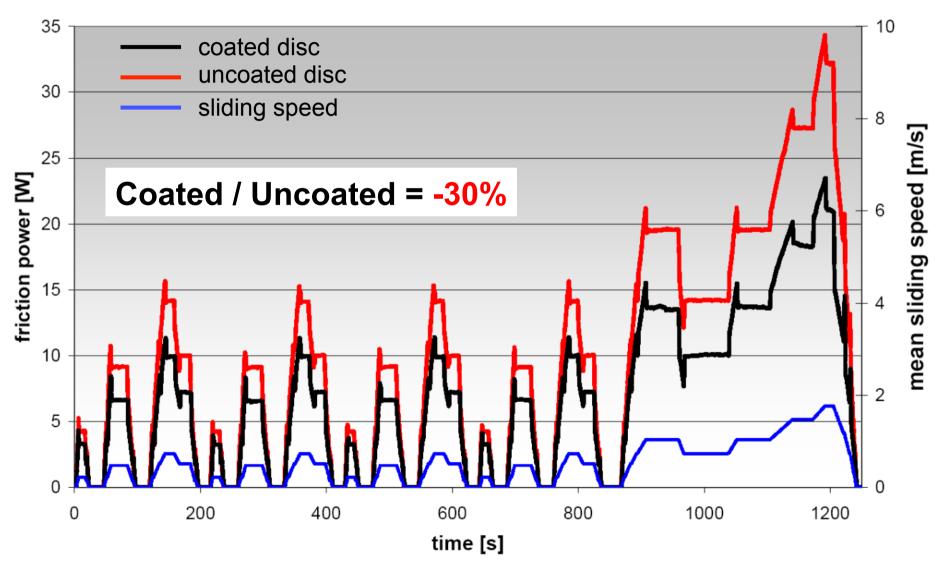

> COF in non-oxygen environments seems to be graphite-shearing dominated

Graphit-iC[™]HT (Hardness ~1900HV)


Confidential

-1.00

100Cr6 Ring-on-Disc, 2MPa, 25°C


Oil: Shell Helix Ultra (5W30)

100Cr6 Ring-on-Disc, 2MPa, 120°C

Confidential

Oil: Shell Helix Ultra (5W30)

Miba

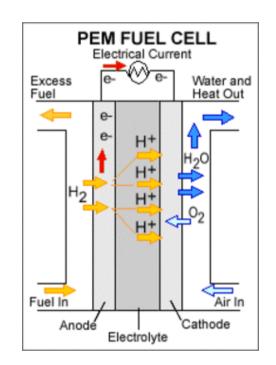
Confidential

Possible application

- Piston Pins
- Piston skirt
- Liner
- Tappets
- Valves
- Cam
- Conrod
- Camshafts
- Turbocharger cmponents

Agenda

- Motivation
- High Temperature DLC
- Coatings for Fuel Cell Applications
- Summary

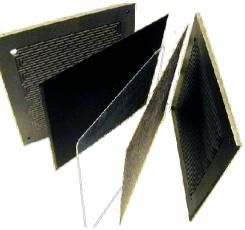

Hydrogen PEM FuelCells and Bipolar Plates

Confidential

The numerous applications and the environmental movement are triggering the market demand

- backup power
- Automotive market
- Portable devices

Hydrogen PEM FuelCells and Bipolar Plates


Confidential

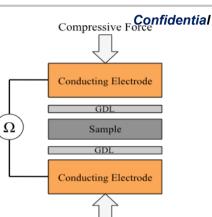
- Numerous functions to perform
 - Separation of gases between single cells
 - A solid structure for the stack
 - Current collection
 - Uniform distribution of reaction gases
 - Water and heat management out of the cell

•Contribute a significant proportion of

Cost; Weight; Volume

•Can have dramatic effect on fuel cell performance

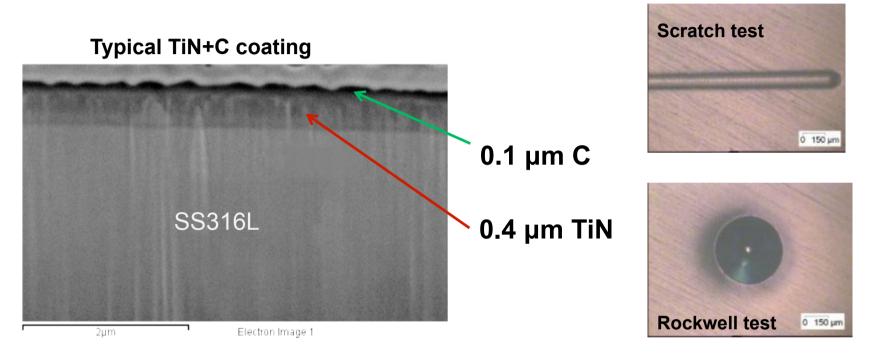
- Good mechanical strength; electrical conductivity; thermal conductivity
- Can be easily and consistently manufactured to accommodate flow patterns
- Can be recycled
- Need high corrosion resistance
- 1. Acidic environment, pH3-5; Oxidising gases, O2 from air; Also at 0-1000mV
- 2. Sulphate and fluorine ions from Nafion membrane degradation
- 3. Operating at 60-120°C



- Metal ions from corrosion process migrate to membrane
- This reduces lowers the ionic conductivity of the membrane and poisons the catalyst, therefore reducing fuel cell performance
- Any corrosion layer may reduce electrical conductivity of plates
- Therefore increase voltage loss of fuel cells due to higher electrical resistance

n Miba

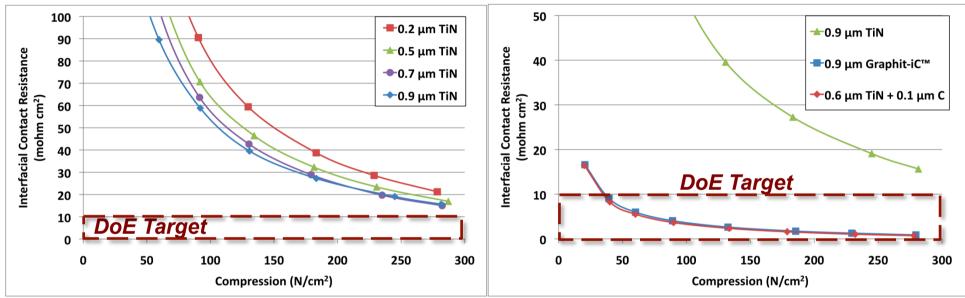
Experiment and testing


 Interfacial contact resistances (ICR) measuring area: 4x4 cm2 GDLs: Toray H120 compressing pressure: 140 & 20-280N/cm2 recording time: after 300sec.

- Potentiodynamic electrochemical testing (corrosion resistance) measuring area: 1 cm2 electrolyte: 250 ml of 0.5M H2SO4.
 bath temperature: 70°C
 bubbled air or H2 reference electrode: Hg/Hg2SO4/K2SO4sat (MSE),(0.68V vs SHE) scan rate: 1 mV/s
- AFM and Roughness analysis Atomic force microscopy (AFM) FIB-SEM

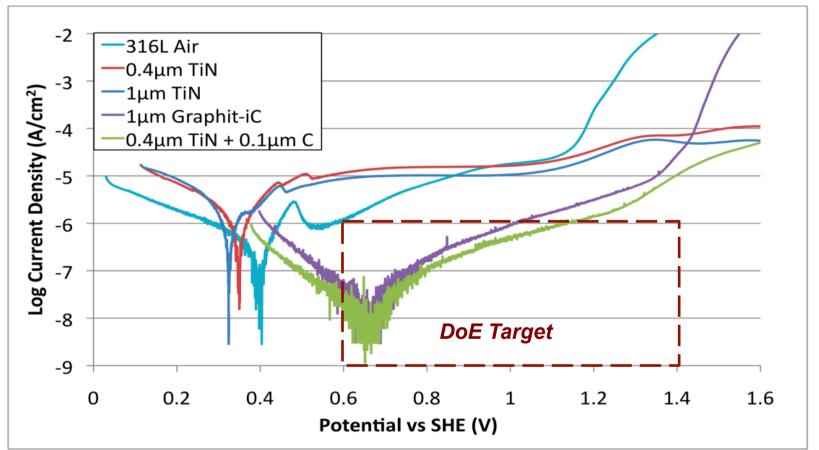
Coating Structure and Adhesion

- Good adhesion and cohesion on M42 witness sample
- Typical coating thickness: TiN (0.4 μm) + C (0.1 μm)
- Hardness of the coating: Hp=~2,000 Hv


Interfacial contact resistances (ICR) -1

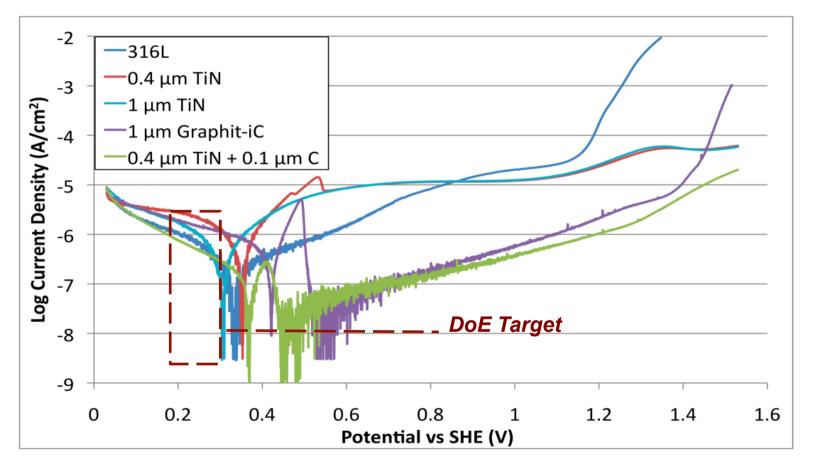
- Uncoated AISI 316L plate: highest ICR value of 368 mΩcm2;
- TiN coated plates : lower in value, in the range 30-50 m Ω cm2
- In particular, the C and Graphit-iC[™] coatings : approaching the value of the 10 nm Au thin film, 1-2mΩcm2 meeting the DoE target of <10 mohm cm2

Interfacial contact resistances (ICR) -2



- Typical behaviour : ICR decreases as the pressure is increased.
- Small change in ICR with [the change of the] TiN coating thickness between 0.2 and 0.9 µm, under a pressure range of 30 to 170 Ncm-2.
- C coating on top of the TiN coatings reduce the ICR value further to similar values as seen for the single layer Graphit-iC[™] coating

Electrochemical Characteristics


(a) Simulated cathode with bubbled air

Potentiodynamic curves at 1 mV/s obtained from samples in $0.5M H_2SO_4$ solution at 70° C

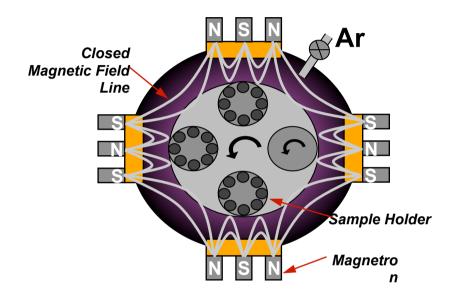
Electrochemical Characteristics

Confidential

(b) Simulated anode with bubbled hydrogen

Potentiodynamic curves at 1 mV/s obtained from samples in $0.5M H_2SO_4$ solution at $70^{\circ}C$

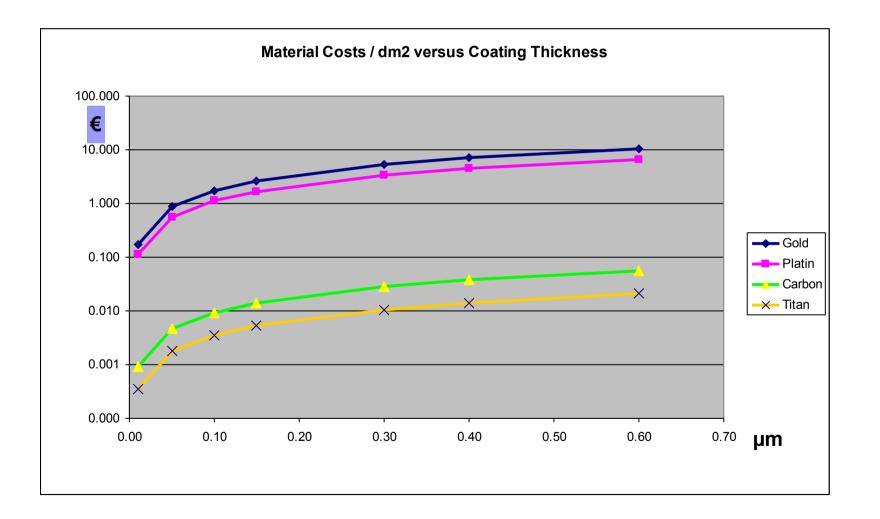
n Miba


Electrochemical Characteristics

- Increasing the thickness of TiN coatings only improves the corrosion resistance marginally.
- Graphit-iC[™] coatings improve the corrosion resistance of BPPs.
- •
- The TiN+C coated 316L showed greater corrosion resistance than the Graphit-iC[™] coating, especially at carbon corrosion potentials of ~1.4V.
- Slight corrosion behaviour differences have been shown between anode and cathode conditions.
- At the stable stage, TiN+C > Graphite-iC > TiN >> Stainless Steel
- TiN+C meets the DoE target of <1µA/cm2 under simulated cathodic standby (0.9V) and operating (0.6V) potentials, however it is still slightly too high in simulated anodic conditions

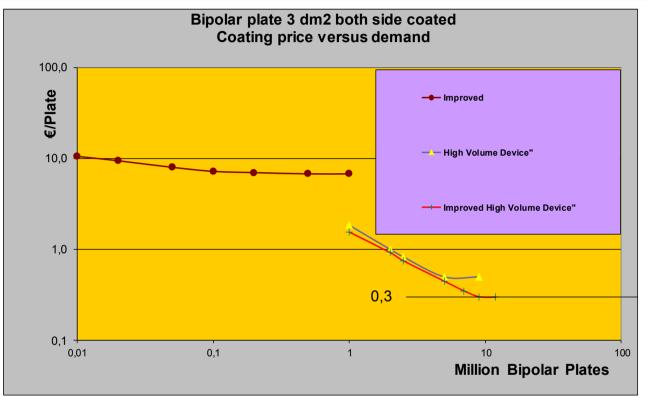
Coating Equipment and Volumes

Confidential


Coating equipment for different volume scenarios:

- Equipment for prototypes and lower volumes
- Equipment for volumes up to 300k parts/year:

In-line [device], air-to-air equipment with higher efficiency compared to conventional batch equipment


Coating Material Cost Examples

Confidential

Coating Cost Estimation

both side coated high volumes < 10 \in for 1 m² <0,12 \$ for 1 dm²

Agenda

- Motivation
- High Temperature DLC
- Coatings for Fuel Cell Applications
- Summary

- Coatings, including TiN, carbon-based coatings, Graphit-iC[™] or doublelayer TiN+C coatings, can significantly reduce the interfacial contact resistance (ICR) of AISI316 stainless steel PEMFC bipolar plates.
- In comparison with the bare AISI316L plates, TiN coatings provide corrosion protection to the stainless steel BPPs under simulated PEMFC operating conditions
- Graphit-iC[™] coatings offer much better corrosion resistance for both the anode and cathode.
- TiN+C coatings offer the best performance so far from all the potentiodynamic polarization tests carried out under the bubbled air and hydrogen gas in an acidic solution [to] which simulates the PEMFC [the] cathode and anode environments respectively.

Summary

Confidential

- Reducing CO2 emission is one of the top priorities for the automotive industry and us
- Coatings technology is a key for reduction of friction
- •Tailor made coatings are also a key driver for automotive fuel cell applications
- •Regarding Performance and Costs

Thank you for your attention.

Questions ?